The use of exotic optical modes is becoming increasingly widespread in microscopy. Particularly, propagation-invariant beams, such as Airy and Bessel beams and optical lattices, have been particularly useful in light-sheet fluorescence microscopy (LSFM) as they enable high-resolution imaging over a large field-of-view (FOV), possess a resistance to the deleterious effects of specimen induced light scattering, and can potentially reduce photo-toxicity.
Although these propagation-invariant beams can resist the effects of light scattering to some degree, and there has been some interest in adaptive-optical methods to correct for beam aberrations when they cannot, scattering and absorption of the illuminating light-sheet limit the penetration of LSFM into tissues and results in non-uniform intensity across the FOV.
A new degree of control over the intensity evolution of propagation-invariant beams can overcome beam losses across the FOV, restoring uniform illumination intensity and therefore image quality. This concept is compatible with all types of propagation-invariant beams and is characterised in the context of light-sheet image quality.
Another property to control is the wavelength of light used. Optical transmission through tissue is greatly improved at longer wavelengths into the near-infrared due to reduced Rayleigh scattering and two-photon excitation has proved beneficial for imaging at greater depth in LSFM. Three-photon excitation has already been demonstrated as a powerful tool to increase tissue penetration in deep brain confocal microscopy, and when combined with beam shaping can also be a powerful illumination strategy for LSFM.
Recent progress in shaping optical fields for LSFM will be presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.