Near-infrared (NIR) technology appears promising as a non-invasive clinical technique for breast cancer screening and diagnosis. The technology capitalizes on the relative transparency of human tissue in this spectral range and its sensitivity to the main components of the breast: water, lipid and hemoglobin. In this work we present initial results obtained using the SoftScan® breast-imaging system developed by ART, Advanced Research Technologies inc., Montreal. This platform consists of a 4-wavelength time-resolved scanning system used to quantify non-invasively the local functional state of breast tissue. The different aspects of the system used to accurately retrieve 3D optical contrast will be presented. Furthermore, preliminary data obtained from a prospective study conducted at The Royal Victoria Hospital of the McGill University Health Center in Montreal will be presented. During this study, 65 volunteers with either abnormal or normal mammograms were enrolled. Analysis of the data gathered by SoftScan demonstrated the potential of the technology in discriminating between healthy and diseased tissue.
KEYWORDS: Magnetic resonance imaging, Visualization, Brain, 3D vision, Animal model studies, 3D acquisition, Data modeling, 3D modeling, Basal ganglia, Cryogenics
Many of the critical basal ganglia structures are not distinguishable on anatomical magnetic resonance imaging (MRI) scans, even though they differ in functionality. In order to provide the neurosurgeon with this missing information, a deformable volumetric atlas of the basal ganglia has been created from the Shaltenbrand and Wahren atlas of cryogenic slices. The volumetric atlas can be non-linearly deformed to an individual patient's MRI. To facilitate the clinical use of the atlas, a visualization platform has been developed for pre- and intra-operative use which permits manipulation of the merged atlas and MRI data sets in two- and three-dimensional views. The platform includes graphical tools which allow the visualization of projections of the leukotome and other surgical tools with respect to the atlas data, as well as pre- registered images from any other imaging modality. In addition, a graphical interface has been designed to create custom virtual lesions using computer models of neurosurgical tools for intra-operative planning. To date 17 clinical cases have been successfully performed using the described system.
Image-guided surgery has evolved over the past 15 years from stereotactic planning, where the surgeon planned approaches to intracranial targets on the basis of 2D images presented on a simple workstation, to the use of sophisticated multi- modality 3D image integration in the operating room, with guidance being provided by mechanically, optically or electro-magnetically tracked probes or microscopes. In addition, sophisticated procedures such as thalamotomies and pallidotomies to relieve the symptoms of Parkinson's disease, are performed with the aid of volumetric atlases integrated with the 3D image data. Operations that are performed stereotactically, that is to say via a small burr- hole in the skull, are able to assume that the information contained in the pre-operative imaging study, accurately represents the brain morphology during the surgical procedure. On the other hand, preforming a procedure via an open craniotomy presents a problem. Not only does tissue shift when the operation begins, even the act of opening the skull can cause significant shift of the brain tissue due to the relief of intra-cranial pressure, or the effect of drugs. Means of tracking and correcting such shifts from an important part of the work in the field of image-guided surgery today. One approach has ben through the development of intra-operative MRI imaging systems. We describe an alternative approach which integrates intra-operative ultrasound with pre-operative MRI to track such changes in tissue morphology.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.