As the semiconductor manufacturing critical dimension continues to shrink, the requirement placed on overlay control becomes much more stringent. Due to the fact that the absolute overlay tolerances are approaching 2-3 nm, process induced errors can be a major contribution to the overlay error. For instance, chemical mechanical polishing (CMP) are found to cause 1-3 nm overlay measurement error, which is of the same magnitude to the total overly budget. Because of this, efforts are being made to investigate the mechanism of overlay shift caused by process variations. In this paper, we present a study of the Diffraction based Overlay (DBO) metrology with a model based on the Finite-Difference Time-Domain (FDTD) method on the impact of CMP process to overlay measurement. Measurement error caused by CMP are discussed. Our investigation shows that the impact of the CMP process can cause the +/- diffraction orders to become asymmetric, which will confuse DBO measurement signals. This study has been performed across the visible illumination spectrum and the result of our study will be illustrated.
With the continuous shrinking of critical dimension, it may require more time and effort to reduce or remove the lithography defects in the development process. Therefore, defect reduction has become one of the most important technical challenges in device mass production. With the purpose of finding an optimizing recipe, we can simulate group parameters, including nitrogen gas dispensation and wafer-rotation speed. From previous studies, we have established a model based on viscous fluid dynamics and have calculated the removing force distribution across the 300-mm-diameter wafer for the defect residual. In this model, we assumed that the defects mostly are polymer residual; once the removing force reached a certain threshold level (1 × 10 − 14 N), the defect with a “centered-ring-like” signature could be removed. For illustration, several groups of optimal parameter under postdeveloping rinse process conditions are given. The numerical simulations represent several recipes in the development process. We find that we can reproduce a group of the total force curves. From the simulation, we could find that we can get the minimally required strength from the three parameters for defect removal. We have done some experiments to validate the simulation results. The experimental data are almost in agreement with the simulation data. Therefore, the above simulation results have verified the effectiveness and validity of the proposed optimization methodology, and it also has shown that the trend of parameters provided by the optimized method has the potential to be an efficient candidate for reducing or removing lithography defects in the development process.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.