Pteridines and its derivatives are considered as important cofactors participating in cellular metabolism. Studies reported that, the distribution of pteridines and its derivatives may change when monocytes and macrophages are activated under interferon- γ stimulus by cancer. Also, there is a significant variation in the concentration and conformation of pteridines under different pathological conditions. It has been reported that during the transformation of normal cells into neoplasm, the metabolic end products of the cancer cells are released into the blood, thereby changing the components and contents of the biological molecules and their local environment. In this regard, the present study is aimed to characterize pteridines and its derivatives in the blood plasma of normal subjects and patients with confirmed oral cancer using fluorescence and Raman spectroscopy. Observed Fluorescence & Raman spectral characteristics of samples and subsequent discriminant analysis predicts that 75 % of the original and cross validated groups are correctly classified.
Urine is one of the diagnostically important bio fluids, as it has many metabolites and some of them are native fluorophores. Riboflavin and its cofactors FMN and FAD which act as electron carriers participates in a diversity of redox reactions central to human metabolism. It has been reported that riboflavin plays a prominent role in progression of various cancers. It is well documented that, the fluorophore flavins that is not bound to proteins in the plasma is filtered by glomerulus and excreted in urine. Fluorescence spectroscopy has been considered as a promising tool to characterize the riboflavin present in the urine. The overall spectral data at 450 nm excitation were subjected to principal components based linear discriminant analysis. As a result, 100 % of the normal subjects and 90% of the cervical cancer subjects were correctly classified which shows that there exists significant difference between them.
Stratum Corneum is the outer covering of the body, which serves as a barrier to infection. The composition of the skin changes withexternal environmental factors, such as temperature, sun irradiation, air pollutants, chemical hazards, as well as other factors.Solar radiation,especially IR radiation is being used as medicine for wound healing processes, in cosmetology, in physiotherapy and warming of muscles. Also, it was reported that the IR radiation produces free radicals and the excess production of free radicals causes irreversible damages. It has been reported that heat may be transmitted by IR radiation, which results in raised skin temperature and the chronic heat exposure of human skin may cause alterations. Erythema igne is one such disease known to be caused by chronic heat exposure. Many techniques have been adopted for monitoring the changes in the skin, which includes the tape stripping and biopsy as the primary methodology. However, these in vitro techniques are invasive, time consuming, and may not provide the actual information as in in vivo conditions. Confocal Raman spectroscopy,which is non-invasive and real time was considered as a potential tool for the in vivo analysis of the distribution and characteristics of different metabolic conditions and their variations of the skin. In this regard, we aimed at in vivo characterization of the IR induced changes in the stratum corneum of human volunteers. The results of Raman spectral signatures with respect to the control and IR exposed skin will be discussed.
In the confocal Raman spectra of skin dermis, the band area in the spectral region of proline and hydroxyproline varies according to the age and health condition of the volunteers, classified as healthy young women, healthy elderly women, and diabetic elderly women. Another observation refers to the intensity variation and negative Raman shift of the amide I band. To understand these effects, we adopted a model system using the DFT/B3LYP:3-21G procedure, considering the amino acid chain formed by glycine, hydroxyproline, proline, and alanine, which interacts with two and six water molecules. Through these systems, polarizability variations were analyzed to correlate its values with the observed Raman intensities of the three groups of volunteers and to assign the vibrational spectra of the skin dermis. As a way to correlate other experimental trends, we propose a model of chemical reaction of water interchange between the bonding amino acids, in which water molecules are attached with glucose by hydrogen bonds. The theoretical results are in accordance with the observed experimental trends.
Stokes shift spectroscopy has been considered as a potential tool in characterization of multiple components present in tissues and biofluids. Since, the intensity and resolution of the fluorophores depends on the Stokes shift, different opinion has been reflected by the researchers in fixing the Stokes shift. Also, not many studies have been reported on the characterization of biofluids and especially on the diagnosis of cancer. Urine is considered as an important diagnostic biofluid as it is rich in many metabolites where many of them are native fluorophores. In this study, we aimed at characterizing the urine of normal subjects and patients with cervical cancer as function of different Stokes shift. It is observed that Neopterin and Riboflavin are the main fluorophores contribute to the variation between normal and cervical cancer subjects. Ratio variables based linear discriminant analysis shows that the Stokes shift of 40 nm and 60 nm may be considered for better characterization with better signal to noise ratio when compared to others.
ion for various disease diagnosis including cancers. Oral cancer is one of the most common cancers in India and it accounts for one third of the global oral cancer burden. Raman spectroscopy of tissues has gained much attention in the diagnostic oncology, as it provides unique spectral signature corresponding to metabolic alterations under different pathological conditions and micro-environment. Based on these, several studies have been reported on the use of Raman spectroscopy in the discrimination of diseased conditions from their normal counterpart at cellular and tissue level but only limited studies were available on bio-fluids. Recently, optical characterization of bio-fluids has also geared up for biomarker identification in the disease diagnosis. In this context, an attempt was made to study the metabolic variations in the blood, urine and saliva of oral cancer patients and normal subjects using Raman spectroscopy. Principal Component based Linear Discriminant Analysis (PC-LDA) followed by Leave-One-Out Cross-Validation (LOOCV) was employed to find the statistical significance of the present technique in discriminating the malignant conditions from normal subjects.
Cervical cancer is considered as the second most commonly occurring malignancy among women, next to breast cancer. It is well known that most of the cancer patients diagnosed with advanced stages and there is a pressing need for improved methods to detect cancer at its initial stages. Many techniques have been adopted for the diagnosis of cervical cancer. Among these, fluorescence polarization spectroscopy is a complementary technique of fluorescence spectroscopy which helps us to elucidate the spectral characteristics which highly depend on pH, viscosity and local environment. Since urine has many metabolites and the measurement of native fluorescence of urine, in principle, able to provide an indication of a number of health conditions, attempts were made to study fluorescence anisotropic characterization of the human urine of cervical cancer patients and normal subjects. Significant differences were observed between the anisotropic and polarization values of cancer subjects and normal subjects.
Oral cancers are considered to be one of the most commonly occurring malignancy worldwide. Over 70% of the cases report to the doctor only in advanced stages of the disease, resulting in poor survival rates. Hence it is necessary to detect the disease at the earliest which may increase the five year survival rate up to 90%. Among various optical spectroscopic techniques, Raman spectroscopy has been emerged as a tool in identifying several diseased conditions, including oral cancers. Around 30 - 80% of the malignancies of the oral cavity arise from premalignant lesions. Hence, understanding the molecular/spectral differences at the premalignant stage may help in identifying the cancer at the earliest and increase patient’s survival rate. Among various bio-fluids such as blood, urine and saliva, urine is considered as one of the diagnostically potential bio-fluids, as it has many metabolites. The distribution and the physiochemical properties of the urinary metabolites may vary due to the changes associated with the pathologic conditions. The present study is aimed to characterize the urine of 70 healthy subjects and 51 pre-malignant patients using Raman spectroscopy under 785nm excitation, to know the molecular/spectral differences between healthy subjects and premalignant conditions of oral malignancy. Principal component analysis based Linear discriminant analysis were also made to find the statistical significance and the present technique yields the sensitivity and specificity of 86.3% and 92.9% with an overall accuracy of 90.9% in the discrimination of premalignant conditions from healthy subjects urine.
Steady-state and time-resolved fluorescence spectroscopy were employed in the discrimination of cervical cancer patients from healthy subjects using urine samples. Fluorescence emission at 390 and 440 nm was considered to monitor the fluorescence of indoxyl sulfate and neopterin. Significant spectral differences were observed between healthy and cancer subjects. Different ratio parameters were calculated from the spectral intensity at 280- and 350-nm excitation and were subjected to stepwise linear discriminant analysis. In total, 84.0% of samples were correctly classified at 280 nm and 96.4% were correctly classified at 350 nm. The fluorescence decay kinetics of urine samples at 390-nm emission was best described by bi- exponential fits, whereas the decay characteristics at 440 nm of urine samples was best explained by bi-exponential fits and, in some cases, by tri-exponential fits. However, the decay kinetics of both indoxyl sulfate and neopterin standards was well described by bi-exponential decays. Based on the fluorescence emission characteristics and statistical analysis, the fluorophores indoxyl sulfate, neopterin, and riboflavin may be considered as potential biomarkers for cervical cancer diagnosis.
Urine is one of the diagnostically important bio fluids, as it has many metabolites and some of them are native fluorophores. There may be a variation in the distribution and the physiochemical properties of the fluorophores during any metabolic change and pathologic conditions. Native fluorescence spectroscopy has been considered as a promising tool to characterize the fluorophores present in the urine. In this study, we aimed at characterizing the urine of both normal and patients with confirmed cancer using steady state and time-resolved fluorescence spectroscopy at 280 nm and 350 nm excitation. It is observed that the metabolites indoxyl sulphate and neopterin and its derivatives are responsible for altered spectral signatures at 280 nm, and 350 nm excitation. The overall spectral data were subjected to Principal Component Analysis and the resultant components were used as input in the linear discriminant analysis. As a total, 84% and 81.8% of samples were correctly classified at 280 nm and 350 nm respectively.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.