Nanocomposites of ZnO with p-type NiO and n-type SnO2 in the equimolar ratio were prepared by microwave assisted method inorder to reduce the fast recombination rate of ZnO. XRD reveals the formation of nanocomposites of ZnO. The photocatalytic activity of nanocomposites against RhB is poor compared to control ZnO. The control ZnO nanocrystals exhibit 100% degradation efficiency and is mainly ascribed to the decrease in band gap and increase in surface defects. The decolorization of RhB follows the pseudo-first order kinetics and the mechanism is explained on the basis of charge trapping through defect sites.
Nanocomposite of metal oxide semiconductors are multifunctional and one such nanocomposite ZnO/ Mn3O4 (2:1) was synthesized ZMA4 (ZnO: Mn3O4 using ammonia), ZMH4 (ZnO: Mn3O4 using hexamine) by the coprecipitation route. In addition pure ZnO was prepared using ammonia (ZA) and hexamine (ZH). XRD reveals the crystal structure of ZnO/Mn3O4 and the average crystallite size is estimated as 43, 12, 42 and 18 nm for ZA, ZMA4, ZH and ZMH4 respectively. FTIR bands at 440-490 and 616-621cm-1 are due to Zn-O and Mn-O vibrational bands. Presence of manganese in nanocomposites is confirmed by EDS. SEM micrographs indicate the formation of nanoparticles (ZA and ZMA4) and nanorods (ZH-98 nm length, 63 nm dia). Excitonic absorption peaks at 370 and 290 nm in the UV-Vis spectra are attributed to ZnO/Mn3O4 nanocomposite. The bandgap is estimated as 2.7, 2.3, 2.6 and 3.0 eV for ZA, ZMA4, ZH and ZMH4 respectively. FL spectra of ZA, ZMA4 expose the emission at 366 and 396 nm owing to the near band edge (NBE) and zinc interstitial at 468 nm. ZH nanorods show the emission at 386, 468 and 558 nm which are attributed to NBE, zinc interstitial and oxygen vacancy respectively. The reduction of oxygen vacancy is observed in ZMH4 as manganese effectively changes the morphology from nanorod to nanoparticle. The second harmonic generation efficiency measured for ZA and ZH is 0.6 and 0.9 times KDP using Q - switched Nd: YAG laser (1064nm, 10 Hz, 9 ns).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.