This work presents a commercial webcam CMOS (Complemented-Metal-Oxide-Semiconductor) implemented as a spectrometer for femtosecond pulses characterization at the Near-Infrared region (NIR, 1.1 - 1.6 μm), applying spectral interferometry. The spectral interferometry setup consists of a collinear Michelson interferometer in which two femtosecond pulses replicas, generated from a home-made Optical Parametric Oscillator (fs-OPO), are relatively delayed with respect to each other. A reflecting grating disperses the pulse replicas and then, the modulated spectrum is generated in a 2-Fourier setup, using a single lens, with the CMOS sensor located at the Fourier plane. The NIR CMOS response is produced through the Two-Photon Absorption (TPA) effect, capable of generating the nonlinear spectral intensity and the corresponding modulated spectrum (spectral interferometry signal). The cost-effective TPAspectrometer is capable of measuring the interferogram, with a high resolution of 0.72nm and very high sensitivity of few 𝜇W average power or few fJ per pulse. Finally, we calculate the spectral phase difference using a phase retrieval algorithm from the nonlinear spectral interferometry signal.
In this work we present the design and manufacture of a compact Shack-Hartmann wavefront sensor using a Raspberry Pi and a microlens array. The main goal of this sensor is to recover the wavefront of a laser beam and to characterize its spatial phase using a simple and compact Raspberry Pi and the Raspberry Pi embedded camera. The recovery algorithm is based on a modified version of the Southwell method and was written in Python as well as its user interface. Experimental results and reconstructed wavefronts are presented.
We propose the design of a new technique for measuring the spectral resolution of a Czerny-Turner Spectrometer based on spectral interferometry of ultrashort laser pulses. It is well known that ultrashort pulse measurement like SPIDER and TADPOLE techniques requires a precise and well characterized spectrum, especially in fringe resolution. We developed a new technique, to our knowledge, in which by measuring the nominal fringe spacing of a spectral interferogram one can characterize the spectral resolution in a Czerny-Turner spectrometer using Ryleigh’s criteria. This technique was tested in a commercial Czerny-Turner spectrometer. The results demonstrate a consistent spectral resolution between what was reported by the manufacturer. The actual calibration technique was applied in a homemade broadband astigmatism-free Czerny-Turner spectrometer. Theory and experimental results are presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.