Giulia Macario, Giuseppe Pupillo, Gianni Bernardi, Pietro Bolli, Paola Di Ninni, Giovanni Comoretto, Andrea Mattana, Jader Monari, Federico Perini, Marco Schiaffino, Marcin Sokolowski, Randall Wayth, Jess Broderick, Mark Waterson, Maria Grazia Labate, Riccardo Chiello, Alessio Magro, Tom Booler, Andrew McPhail, Dave Minchin, Raunaq Bhushan
The low frequency component of the Square Kilometre Array (SKA1-Low) will be an aperture phased array located at the Murchison Radio-astronomy Observatory (MRO) site in Western Australia. It will be composed of 512 stations, each consisting of 256 log-periodic dual-polarized antennas, and will operate in the low frequency range (50 to 350 MHz) of the SKA bandwidth. The Aperture Array Verification System 2 (AAVS2), operational since late 2019, is the last full-size engineering prototype station deployed at the MRO site before the start of the SKA1-Low construction phase. The aim of this paper is to characterize the station performance through commissioning observations at six different frequencies (55, 70, 110, 160, 230, and 320 MHz) collected during its first year of activities. We describe the calibration procedure, present the resulting all-sky images and their analysis, and discuss the station calibratability and system stability. Using the difference imaging method, we also derive estimates of the SKA1-Low sensitivity for the same frequencies and compare them with those obtained through electromagnetic simulations across the entire telescope bandwidth, finding good agreement (within 13%). Moreover, our estimates exceed the SKA1-Low requirements at all considered frequencies by up to a factor of ∼2.3. Our results are very promising and allow for an initial validation of the AAVS2 prototype station performance, which is an important step toward the coming SKA1-Low telescope construction and science.
We present the Engineering Development Array 2, which is one of two instruments built as a second generation prototype station for the future Square Kilometre Low-Frequency Array. The array is comprised of 256 dual-polarization dipole antennas that can work as a phased array or as a standalone interferometer. We describe the design of the array and the details of design changes from previous generation instruments, as well as the motivation for the changes. Using the array as an imaging interferometer, we measure the sensitivity of the array at five frequencies ranging from 70 to 320 MHz.
The SKA LOW telescope is an interferometer composed of 512 stations. Each station consists of 256 electronically steered antennas. The Low Frequency Aperture Array is the portion of the SKA-LOW telescope including the antennas and the related electronics. The LFAA signal processing chain amplifies, transports and combines the signals from the antennas composing each station into a coherent beam. Beamforming is performed in the frequency domain, with stringent requirements on bandpass flatness, linearity in a RFI contaminated spectral region, and allowed signal degradation. We adopted an architecture including a highly optimized oversampled polyphase filterbank for channelization, and a distributed network beamformer. The system has been validated as part of the Aperture Array Verification System, a single station operating at the SKA site in Western Australia.
KEYWORDS: Prototyping, Analog electronics, Signal processing, Electronic filtering, Digital filtering, Data conversion, Software development, Field programmable gate arrays, Polarization, Antennas
A novel version of digital hardware Italian Tile Processing Module (ITPM) 1.6 has been released for the Low-Frequency Aperture Array (LFAA) component of the Square Kilometre Array (SKA). This back-end includes two plugged-in main blocks, as an analog device , the Pre-ADU board, and an Analog to Digital Unit (ADU), a 6U board containing sixteen dual-inputs Analog to Digital Converters and two Field Programmable Gate Array (FPGA) devices, capable of digitizing and processing 32 RF input signals (50-650 MHz). We present the main features of the upgrade of the board compared to previous versions: there are new and high performance components improving processing capability, mechanical changes matching the design of the housing sub-rack and finally a general reduction of the overall power consumption. The ITPM ADU 1.6 version, now in engineering phase together with its sub-rack system, is currently the last prototype before the design of the industrial line for mass production, necessary for the LFAA deployment. Results of system performances will be presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.