The inverse Faraday effect is associated with light-induced magnetism. In nonmagnetic materials, the magnetic field scales with intensity; an electric field both produces surface charges and imparts momentum to those charges. The angular momentum of surface currents may induce a magnetic field, that is highly dependent on the shape nano-geometry. Here, we measure the Inverse Faraday Effect on nonmagnetic plasmonic nanodisks. We explore the effect of nanodisk aspect ratio. When the disk is thin, the plasmon resonance significantly red-shifts, which coincides with electron spillout.
Reducing energy dissipation while increasing speed in computation and memory is a long-standing challenge for spintronics research [1]. In the last 20 years, femtosecond lasers have emerged as a tool to control the magnetization in specific magnetic materials at the picosecond timescale [2]. However, the use of ultra-fast optics in integrated circuits and memories would require a major paradigm shift. An ultrafast electrical control of the magnetization [3] is far preferable for integrated systems. Here we demonstrate reliable and deterministic control of the out-of-plane magnetization of a 1 nm-thick Co layer with single 6 ps-wide electrical pulses that induce spin orbit torques on the magnetization. Due to the short duration of our pulses, we enter a counter-intuitive regime of switching where heat dissipation assists the reversal. These experiments prove that spintronic phenomena can be exploited on picosecond time-scales for full magnetic control.
Ultrafast control of magnetic order in materials requires a fundamental understanding of how energy and angular momentum flow between electronic, magnetic, and vibrational degrees-of-freedom. We investigate the ultrafast response of Au/TmIG and Au/YIG bilayers to ultrafast laser heating of the Au electrons. In the picoseconds after heating, large interfacial spin currents occur due to a temperature imbalance between electrons and phonons in the metal, and magnons and phonons in the magnetic insulator. We utilize four different optical probes to develop a complete picture of the heat and spin transport in Au/TmIG and Au/YIG. Magneto-optic Kerr effect measurements of Au at a wavelength of 800 nm detects the spin accumulation in the normal metal that results from interfacial spin-currents. Magneto-optic Kerr effect measurements at 400 nm monitor the ultrafast magnetization dynamics of the garnet insulator that occur due to increases in magnon population. Finally, thermoreflectance measurements at 690 and 950 nm monitor the temperature evolution of the Au electrons and phonons, respectively. Together, these measurements allow us to estimate the magnitude of the transport coefficients responsible for the longitudinal spin-Seebeck effect in these systems. These coefficients include the electron-magnon conductance of the Au/TmIG and Au/YIG interfaces, the electron-phonon coupling in the Au layer, and the magnon-phonon coupling in the TmIG and YIG layers.
When electrons in a magnetic metal are driven far from equilibrium via ultrafast heating of the electrons, the magnetic order undergoes radical changes within tens of femtoseconds due to massive flows of energy and angular momentum between electrons, spins, and phonons. In ferrimagnetic metals such as GdFeCo, ultrafast optical heating can deterministically reverse the magnetization in less than a picosecond. In this talk, I describe our experimental work to gain a better understanding of how energy is exchanged between electrons, phonon, and spins in a magnetic metal following ultrafast heating. We use time-resolved measurements of the magneto-optic Kerr effect to record the response of ferro- and ferri-magnetic metals to heating via ultrafast optical or electrical pulses. Picosecond electrical pulses are generated with photoconductive Auston switches. By comparing the magnetic dynamics that result from electrical vs. optical heating, we identify differences in the rate of energy transfer to phonons from thermal vs. nonthermal electrons. We also find that both optical and electrical heating are effective for ultrafast switching of ferrimagnetic metals. We observe deterministic, repeatable ultrafast reversal of the magnetization of a GdFeCo thin film with a single sub-10 ps electrical pulse. The magnetization reverses in ~10 ps, which is more than one order of magnitude faster than other electrically controlled magnetic switching mechanisms.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.