Neurovascular coupling (NVC) is defined as a local increase in cerebral blood flow in response to neuronal activity, it forms the basis of functional brain imaging and is altered during epilepsy. Because astrocytic calcium signaling (Ca2+) has been involved in the response of parenchymal vessels, this study investigates the role of this pathway during epilepsy. We exploit 4-Aminopyridine (4-AP) induced epileptic seizures to show that absolute Ca2+ concentration in astrocytic endfeet correlates with the changes in diameter of parenchymal vessels during neural activity in vivo. A two-photon laser scanning fluorescence lifetime microscopy was developed to simultaneously monitor free Ca2+ concentration in astrocytic endfeet with the calcium-sensitive indicator Oregon Green 488 BAPTA-1 (OGB-1) and the diameter of parenchymal vessels in the somatosensory cortex of mice following 4-AP injection. Our results reveal that the resting Ca2+ concentration in glial cells was spatially heterogeneous and that resting Ca2+ concentration in somatic regions was significantly higher than in endfoot regions. Moreover, following 4-AP injection in the somatosensory cortex of mice, we observed increases of Ca2+ in astrocytic endfeet associated with vasodilation of parenchymal vessels for each individual ictal event in the epileptic focus. However, vasodilation was seen to be inhibited by increase in absolute resting Ca2+ concentration. Our results suggest a role for baseline astrocytic Ca2+ concentration in vasodilation.
Despite recent findings on the possible role of age-related cerebral microvasculature changes in cognition decline, previous studies of capillary blood flow in aging (using animal models) are scarce and limited to anesthetized conditions. Since anesthesia can have different effects in young and old animals, it may introduce a confounding effect in aging studies. The present study aimed to eliminate the potential confound introduced by anesthesia by measuring capillary blood flow parameters in both awake conditions and under isoflurane anesthesia. We used 2-photon laser scanning fluorescence microscopy to measure capillary diameter, red blood cell velocity and flux, hematocrit and capillary volumetric flow in individual capillaries in the barrel cortex of 6- and 24-month old C57Bl/6 mice. It was observed that microvascular properties are significantly affected by anesthesia leading to different trends in capillary blood flow parameters with aging when measured under awake or anesthetized conditions. The findings in this study suggest taking extra care in interpreting aging studies from anesthetized animals.
Here, we present a serial OCT/confocal scanner for histological study of the mouse brain. Three axis linear stages combined with a sectioning vibratome allows to cut thru the entire biological tissue and to image every section at a microscopic resolution. After acquisition, each OCT volume and confocal image is re-stitched with adjacent acquisitions to obtain a reconstructed, digital volume of the imaged tissue. This imaging platform was used to investigate correlations between white matter and microvasculature changes in aging mice. Three age groups were used in this study (4, 12, 24 months). At sacrifice, mice were transcardially perfused with a FITC containing gel. The dual imaging capability of the system allowed to reveal different contrast information: OCT imaging reveals changes in refractive indices giving contrast between white and grey matter in the mouse brain, while transcardial perfusion of a FITC shows microsvasculature in the brain with confocal imaging.
KEYWORDS: Imaging systems, Modulation, Optical tomography, Digital micromirror devices, Optical imaging, Sensors, Monte Carlo methods, 3D image processing, Tomography, Mirrors
The objective of this work is to compare quantitatively the imaging capabilities of a laminar optical tomography (LOT)
system with those of a spatially modulated imaging (SMI) system. LOT is a three dimensional optical imaging technique
that achieves depth sensitivity by measuring multiple-scattered light at different source-detector separations. The SMI
method is based on spatially modulated illumination-detection patterns, which encode both optical properties and depth
information. In this work, simulation studies are carried out at different noise levels, to obtain the figures of merit of
tomographic reconstructions for both systems. Experiments on phantoms are performed to demonstrate the validity of
the numerical results.
A new optical acquisition scheme based on a pair of digital micromirror devices is developed and applied to three-dimensional tomographic imaging of turbid media. By using pairs of illumination-detection patterns with a single detector, we were able to perform high-resolution quantitative volumetric imaging of absorption heterogeneities embedded in optically thick samples. Additionally, a tomographic reconstruction algorithm was implemented on a graphical processor unit to provide optical reconstructions at a frame rate of 2 Hz. The structured illumination method proposed in this work has significant cost advantages over camera systems, as only a single detector is required. This configuration also has the potential to increase frame rate.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.