The major challenge in the development of monolithic kW class CW fiber lasers is the efficient conversion of pump
photons into a high brightness laser beam under the constraints of heat management, long term stability and
nonlinearities. This article reviews the interaction of some fiber related aspects as e.g. fiber core composition,
photodarkening and modality, as well as their influence on system complexity and power scalability. Recent work on
active fibers, pump couplers, mode field adaptors and other fiber-optic components will be presented.
We report on the generation of pulse average power in excess of 1W (at pulse repetition rate ~100 kHz) in the 3.8-4micron wavelength range, obtained from a periodically-poled lithium niobate optical parametric oscillator pumped by a nanosecond-pulse, high-power 1545nm-wavelength pulsed fiber source.
In recent years fiber pulsed fiber lasers have began to challenge diode pumped solid state lasers in
performance. In particular double-clad fiber lasers and amplifiers with mJ energies and near diffraction
limited beam quality are gaining respect for applications such as materials processing, laser radar and
remote sensing. Frequency conversion of single-polarization fiber lasers further increases the application
space to such as underwater communications, underwater imaging, semiconductor processing and gas
sensing.
Yb fiber lasers have to date produced several mJ pulse energy and several MW peak power but, largely
due to materials issues Er based fiber laser systems underperforms in comparison. Relevant technologies
are reviewed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.