The Ball Aerospace Pipeline Damage Prevention Radar (PDPR) project evaluated the use of airborne synthetic aperture radar (SAR) to detect vehicles and equipment located within buried pipeline right-of-way areas but obscured from visual detection. The project included the configuration of a commercial dual-band SAR/EO system for airborne operations, hardware and software modifications to optimize SAR change detection processing, and the execution of multiple flight tests to characterize SAR performance for the detection of equipment obscured by vegetation. Flight tests were conducted in 2016 and 2017 using X-band, Ku-band and ultra-wide band (UWB) SAR in urban and rural environments. Targets in the open showed close to 100% detection performance while covered target results depended on the amount of vegetative canopy. Detection "through" vegetation was generally better using the UWB system, but vegetation gaps frequently allowed higher spatial resolution detections with the Ku-band system. While large equipment was frequently identifiable in the Ku-band SAR images, having coincident EO imagery proved critical for context and automated deep learning based object identification. The detection performance difference between open and covered conditions clearly illustrates how a collection plan that optimizes open viewing conditions increases the overall probability of detection. This research was performed in response to the Damage Prevention topic through the Technology Development in the Pipeline Safety Research and Development Announcement DTPH5615RA00001.
A new approach to measuring wind and temperature is under development that could revolutionize our ability to monitor wind and neutral temperature in the upper atmosphere. Using a Doppler modulated gas filter correlation technique, wind and temperature can be measured simultaneously from low Earth orbit, continuously from 15 km to over 200 km, on one second time intervals, both day and night. A constellation of six of these dual-sided Doppler Wind and Temperature Sensors (DWTS) on small-sat platforms could provide nearly real time global temperature and wind fields. The DWTS technique, measurements and weather forecast benefits are discussed.
The Passive A-Band Wind Sounder (PAWS) was funded through NASA's Instrument
Incubator Program (IIP) to determine the feasibility of measuring tropospheric wind speed profiles
from Doppler shifts in absorption O2 A-band. It is being pursued as a low-cost and low-risk alternative
capable of providing better wind data than is currently available. The instrument concept is adapted
from the Wind Imaging Interferometer (WINDII) sensor on the Upper Atmosphere Research Satellite.
The operational concept for PAWS is to view an atmospheric limb over an altitude range from the
surface to 20 km with a Doppler interferometer in a sun-synchronous low-earth orbit. Two orthogonal
views of the same sampling volume will be used to resolve horizontal winds from measured line-of-sight
winds.
A breadboard instrument was developed to demonstrate the measurement approach and to
optimize the design parameters for the subsequent engineering unit and future flight sensor. The
breadboard instrument consists of a telescope, collimator, filter assembly, and Michelson
interferometer. The instrument design is guided by a retrieval model, which helps to optimize key
parameters, spectral filter and optical path difference in particular.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.