High-power fiber lasers have experienced a dramatic development over the last decade. Further increasing the output power needs an upscaling of the fiber mode area, while maintaining a single-mode output. Here, we propose an all-solid anti-resonant fiber (ARF) structure, which ensures single mode operation in broadband by resonantly coupling high order modes (HOMs) into the cladding. A series of fibers with core sizes ranging from 40 to 100 μm are proposed exhibiting maximum mode area exceeding 5000 μm2. Numerical simulations show this resonant coupling scheme provides a HOMs suppression ratio more than 20 dB, while keeping the fundamental mode loss lower than 1 dB/m. The proposed structure also exhibits high tolerance for core index depression.
Hollow-core fiber (HCF) has found plenty of interdisciplinary applications in areas ranging from ultra-intense pulse delivery, single-cycle pulse generation, low latency optical communication, UV light sources, mid-IR gas lasers to biochemical sensing, quantum optics and mid-IR to Terahertz waveguides. These applications calls for better performance HCF, especially in loss, bandwidth and mode quality. Here we present a new hollow-core fiber with conjoined-tubes in the cladding and a negative-curvature core shape. It exhibits a minimum transmission loss of 2 dB/km at 1512 nm and a <16 dB/km bandwidth covering the O, E, S, C, L telecom bands. The debut of this conjoined-tube hollow-core fiber, with combined merits of ultralow loss, broad bandwidth, low bending loss, high mode quality and simple structure heralds a new opportunity to fully unleash the potential of hollow-core fiber in laser and telecommunication related applications.
Hollow-core photonic crystal fiber (HC-PCF) has been proved to be a versatile platform for lab-on-a-fiber applications. By filling the fiber with various gases, liquids or solid materials, the light-matter interaction could be greatly enhanced. Many novel optical phenomena that are unattainable in free-space could be easily identified inside the fiber. Such a platform offers a promising route for creating compact, integrable and biocompatible all-fiber multifunctional optical devices. Here, we review our recent progress in developing a novel HC-PCF coined "hollow-core negative curvature fiber" (NCF) that could provide light guidance at spectral ranges covering from UV, visible, NIR to MIR. These NCFs show attributes of low transmission loss, octave-spanning transmission bandwidth, high damage threshold and single modeness. As a proof-of-concept demonstration for lab-on-a-fiber applications, we filled one of the fibers with ethanol (refractive index 1.36) to form a liquid-core anti-resonant fiber. At a low volume of 1 μL, Raman signal from ethanol was observed at a pump power of 2 mW. Such a high performance NCF opens a window for applications in fiber-enhanced spectroscopy, biochemical sensing and nano-plasmonics.
We report on an ultraviolet-enhanced supercontinuum generation in a uniform photonic crystal fiber pumped by a giant-chirped mode-locked Yb-doped fiber laser. We find experimentally that the initial pluses with giant chirp leads more initial energy transferred to the dispersive waves in visible and ultraviolet wavelength. An extremely wide optical spectrum spanning from 370 nm to beyond 2400 nm with a broad 3 dB spectral bandwidth of 367 nm (from 431 nm to 798 nm) is obtained. Over 36% (350 mW) of the total output power locates in the visible and ultraviolet regime between 370 nm and 850 nm with a maximum spectral power density of 1.6 mW/nm at 550 nm. In addition, a blue-enhanced supercontinuum generation pumped by a giant-chirped SESAM mode-locked ytterbium-doped fiber laser is studied. An extremely wide optical spectrum spanning from 380 nm to 2400 nm with total power of 3 W is obtained.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.