The study of the relationship between the spectral characteristics of the photoacoustic signal and the size, density and shape of the absorber is of great significance to image reconstruction and is of great practical significance to the better application of photoacoustic imaging in the medical field. This paper uses the simulation software COMSOL Multiphysics to design a two-dimensional simulation model based on finite element to study the relationship between the spectral characteristics of the photoacoustic signal and the properties of the absorber. In this study, the model consists of three parts: 1) water layer; 2) short pulse laser source (wavelength of 840nm); 3) gastric tumor tissue. The laser point source is located in the middle of the upper water layer. By solving the diffusion equation and the biological heat equation, respectively, the propagation of light in the water layer and the temperature change in biological tissues are simulated. When the absorber is irradiated by a Gaussian pulsed laser, due to the extremely short time, the absorber can be regarded as adiabatic expansion after absorbing energy, thereby generating ultrasonic waves. Using the finite element analysis method, the complex situation of photoacoustic imaging is transformed into the coupling of multiple physical fields, and the photoacoustic signal is obtained by numerical calculation of partial differential equations. Analyzing the simulation results, it is found that the spectral characteristics of the photoacoustic signal are closely related to the size of the absorber. The relationship obtained in this simulation experiment is: the spectral intercept and the size of the absorber have a power function relationship, the larger the size, the larger the spectral intercept , And the growth rate increases with the increase of the size; the spectral slope and the size of the absorber also have a power function relationship, the larger the size, the smaller the spectral slope, and the rate of change of the slope decreases with the increase of the size. For the relationship between the spectral characteristics and density of the photoacoustic signal, the intercept and slope characteristics are opposite. As the density of the photoacoustic absorber increases, the spectral slope of the photoacoustic signal increases, and the spectral intercept of the photoacoustic signal decreases. The photoacoustic signals and spectrograms of different shapes of absorbers have their own characteristics. The research results in this paper can promote the research of photoacoustic imaging and can better apply photoacoustic imaging in the medical field.
The study of the relationship between the spectral characteristics of the photoacoustic signal and the shape and size of the absorber has important practical significance for image reconstruction. Using the commercial finite element simulation software COMSOL Multiphysics, a two-dimensional simulation model based on finite element was designed, which studied the relationship between the spectral characteristics of the photoacoustic signal and the shape and size of the absorber. In this study, the model consists of three parts: 1) water layer; 2) short pulse laser source (wavelength of 840nm); 3) gastric tumor tissue. The laser point source is located in the middle of the upper water layer. Simulate the propagation of light in the water layer by solving the diffusion equation. The temperature changes in biological tissues are obtained by solving the biothermal equation. When the absorber is irradiated by Gaussian pulses, due to the extremely short time, the absorber can be regarded as adiabatic expansion after absorbing energy, thereby generating ultrasonic waves. Using the finite element analysis method, the complex situation of photoacoustic imaging is transformed into the coupling of multiple physical fields and the numerical calculation of partial differential equations to obtain the photoacoustic signal. Fitting the simulation results shows that the spectral characteristics of the photoacoustic signal change regularly with the size of the absorber. The size of the absorber obtained in this paper has a power function relationship with the spectral intercept. The larger the size, the larger the spectral intercept, and the growth rate increases with the increase of the size. The size of the absorber and the spectral slope also have a power function relationship. The slope of the large spectrum is smaller, and the rate of change of the slope decreases as the size increases. At the same time, analyzing the photoacoustic spectrum of absorbers of different shapes also shows that absorbers of different shapes have their own characteristics. This research is helpful to understand the relationship between spectral characteristics and the shape and size of the absorber, and has certain theoretical guiding significance for image reconstruction.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.