Thermal effects of power cables are critical factors for determining the remaining lifetime and efficiency of power grids. Herein, we propose a fiber Bragg grating (FBG) sensor package with high-temperature sensitivity. Using polyacetal, which has a higher coefficient of thermal expansion than typical optical fibers, we constructed the proposed sensor structure. The developed sensor exhibited about 14.1 times higher temperature sensitivity than a typical bare FBG sensor. To measure the temperature variation of power cable joints caused by partial discharge, we constructed a mock system similar to a manhole, and we installed the developed sensor at a 22.9-kV crosslinked polyethylene cable joint. The experimental result reveals that even a slight temperature difference of 0.2°C can be measured using PD (300 pC at 20 kV).
We propose a method of stabilizing the center wavelength of a semiconductor laser using the wavelength-dependent frequency shift of Stokes wave induced by stimulated Brillouin scattering in fiber. Due to the nonlinear behavior of fiber to a strong input power, Stokes wave is generated and its frequency varies in inversely proportional to the input wavelength over a small wavelength range of <1 nm. Therefore, we can obtain the size of the frequency change in Stokes shift due to the variation from the initial wavelength as an error signal. The wavelength can be stabilized by adjusting the current or temperature of the semiconductor laser to compensate for the error signal. In our experiment, 1-pm wavelength stability was achieved together with a long-term wavelength drift (>4 h) of 10 pm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.