The Frontiers in Neurophotonics Symposium is a biennial event that brings together neurobiologists and physicists/engineers who share interest in the development of leading-edge photonics-based approaches to understand and manipulate the nervous system, from its individual molecular components to complex networks in the intact brain. In this Community paper, we highlight several topics that have been featured at the symposium that took place in October 2022 in Québec City, Canada.
SignificanceStimulated emission depletion (STED) microscopy has been used to address a wide range of neurobiological questions in optically well-accessible samples, such as cell culture or brain slices. However, the application of STED to deeply embedded structures in the brain of living animals remains technically challenging.AimIn previous work, we established chronic STED imaging in the hippocampus in vivo but the gain in spatial resolution was restricted to the lateral plane. In our study, we report on extending the gain in STED resolution into the optical axis to visualize dendritic spines in the hippocampus in vivo.ApproachOur approach is based on a spatial light modulator to shape the focal STED light intensity in all three dimensions and a conically shaped window that is compatible with an objective that has a long working distance and a high numerical aperture. We corrected distortions of the laser wavefront to optimize the shape of the bottle beam of the STED laser.ResultsWe show how the new window design improves the STED point spread function and the spatial resolution using nanobeads. We then demonstrate the beneficial effects for 3D-STED microscopy of dendritic spines, visualized with an unprecedented level of detail in the hippocampus of a living mouse.ConclusionsWe present a methodology to improve the axial resolution for STED microscopy in the deeply embedded hippocampus in vivo, facilitating longitudinal studies of neuroanatomical plasticity at the nanoscale in a wide range of (patho-)physiological contexts.
Significance: Stimulated emission depletion (STED) microscopy enables nanoscale imaging of live samples, but it requires a specific spatial beam shaping that is highly sensitive to optical aberrations, limiting its depth penetration. Therefore, there is a need for methods to reduce optical aberrations and improve the spatial resolution of STED microscopy inside thick biological tissue.
Aim: The aim of our work was to develop and validate a method based on adaptive optics to achieve an a priori correction of spherical aberrations as a function of imaging depth.
Approach: We first measured the aberrations in a phantom sample of gold and fluorescent nanoparticles suspended in an agarose gel with a refractive index closely matching living brain tissue. We then used a spatial light modulator to apply corrective phase shifts and validate this calibration approach by imaging neurons in living brain slices.
Results: After quantifying the spatial resolution in depth in phantom samples, we demonstrated that the corrections can substantially increase image quality in living brain slices. Specifically, we could measure structures as small as 80 nm at a depth of 90 μm inside the biological tissue and obtain a 60% signal increase after correction.
Conclusion: We propose a simple and robust approach to calibrate and compensate the distortions of the STED beam profile introduced by spherical aberrations with increasing imaging depth and demonstrated that this method offers significant improvements in microscopy performance for nanoscale cellular imaging in live tissue.
Collagen is the major component of connective tissues, where it assembles into fibrils that exhibit various sizes and form various 3D structures depending on the observed tissue. Any disruption of this microstructure is associated with tissue malfunction and defective biomechanical properties. This study thus aims to investigate the relationship between the microstructure and the macroscopic mechanical response of typical connective tissues: skin (disordered) and cornea (highly ordered). To overcome technical issues in providing experimental multiscale data in intact tissues, we have implemented an original setup combining mechanical assays at tissue scale and Second Harmonic Generation (SHG) imaging of collagen reorganization. This multiphoton imaging modality represents an effective structural probe of the micrometer-scale collagen organization in unstained tissues. 3D SHG images were acquired in dermis from ex vivo murine skin biopsies during controlled stretching until rupture, and in ex vivo Human cornea during inflation assays. Specific image processing was implemented to quantify the reorganization of tissue microstructure and correlate it with stress/stretch relationship at macroscopic scale. In murine skin, we showed that the collagen fibers continuously aligned with stretch, generating the observed increase in mechanical stress, which challenges the usual theoretical explanation of the microstructural origin of the skin macroscopic mechanical response. Moreover, dermis from transgenic mice with defective collagen microstructure exhibited altered collagen reorganization upon traction, which could be linked to the microstructural modifications. In Human cornea, our results showed no reorganization of the collagen fibrils at sub-micrometer scale within the stromal lamellae, while the lamellae at micrometer scale reorganized in a more balanced way along 2 main perpendicular directions, in line with the deformation observed at the macroscopic scale. In conclusion, our approach provides an efficient tool to investigate the biomechanics of collagen-rich tissues in normal and pathological context and to guide tissue engineering with appropriate biomechanical responses.
Type I collagen is a major structural protein in mammals that shows highly structured macromolecular organizations specific to each tissue. This biopolymer is synthesized as triple helices, which self-assemble into fibrils (Ø =10-300 nm) and further form various 3D organization. In recent years, Second Harmonic Generation (SHG) microscopy has emerged as a powerful technique to probe in situ the fibrillar collagenous network within tissues. However, this optical technique cannot resolve most of the fibrils and is a coherent process, which has impeded quantitative measurements of the fibril diameter so far.
In this study, we correlated SHG microscopy with Transmission Electron Microscopy to determine the sensitivity of SHG microscopy and to calibrate SHG signals as a function of the fibril diameter in reconstructed collagen gels. To that end, we synthetized isolated fibrils with various diameters and successfully imaged the very same fibrils with both techniques, down to 30 nm diameter. We observed that SHG signals scaled as the fourth power of the fibril diameter, as expected from analytical and numerical calculations. This calibration was then applied to diabetic rat cornea in which we successfully recovered the diameter of hyperglycemia-induced fibrils in the Descemet’s membrane without having to resolve them. Finally we derived the first hyperpolarizability from a single collagen triple helix which validates the bottom-up approach used to calculate the non-linear response at the fibrillar scale and denotes a parallel alignment of triple helices within the fibrils. These results represent a major step towards quantitative SHG imaging of nm-sized collagen fibrils.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.