A 1064 nm, 1 mJ pulsed fiber MOPA module, housed in 16”x14”x2.5” package for application in a lunar and planetary in-situ surface dating instrument is demonstrated. The module is based on a three-stage MOPA with a 60 μm core tapered fiber terminal amplifier. The master oscillator and first two preamplifier stages, which generate 20 μJ pulses, are all contained on a 13”x11”x1” board. Several improvements to the electronic signal control were instrumental to the laser development, including bipolar drive of the phase modulator for SBS suppression, shaping of the seed pulse to compensate pulse steepening, and pulsed operation of the power amplifier pump to reduce spontaneous emission at low pulse repetition frequency. The packaged laser runs at a repetition rate of 10 kHz and generates 10 ns pulses at 1 mJ with a 40 GHz linewidth, an M2 ~ 1.2 beam quality, and an 18 dB polarization extinction ratio. The modular design enables seven independent lasers to be stacked in a 20”x18”x16.25” enclosure, supporting a path towards a fiber laser based LARIMS for advanced materials characterization and chronological dating in harsh and remote environments.
We demonstrate high power, deep ultraviolet (DUV) conversion to 266 nm through frequency quadrupling of a nanosecond pulse width 1064 nm fiber master oscillator power amplifier (MOPA). The MOPA system uses an Yb-doped double-clad polarization-maintaining large mode area tapered fiber as the final gain stage to generate 0.5-mJ, 10 W, 1.7- ns single mode pulses at a repetition rate of 20 kHz with measured spectral bandwidth of 10.6 GHz (40 pm), and beam qualities of Mx2=1.07 and My2=1.03, respectively. Using LBO and BBO crystals for the second-harmonic generation (SHG) and fourth-harmonic generation (FHG), we have achieved 375 μJ (7.5 W) and 92.5 μJ (1.85 W) at wavelengths of 532 nm and 266 nm, respectively. To the best of our knowledge these are the highest narrowband infrared, green and UV pulse energies obtained to date from a fully spliced fiber amplifier. We also demonstrate high efficiency SHG and FHG with walk-off compensated (WOC) crystal pairs and tightly focused pump beam. An SHG efficiency of 75%, FHG efficiency of 47%, and an overall efficiency of 35% from 1064 nm to 266 nm are obtained.
The spatial resolution of a conventional imaging LADAR system is constrained by the diffraction limit of the telescope aperture. The purpose of this work is to investigate Synthetic Aperture Imaging LADAR (SAIL), which employs aperture synthesis with coherent laser radar to overcome the diffraction limit and achieve fine-resolution, long range, two-dimensional imaging with modest aperture diameters. This paper details our laboratory-scale SAIL testbed, digital signal processing techniques, and image results. A number of fine-resolution, well-focused SAIL images are shown including both retro-reflecting and diffuse scattering targets. A general digital signal processing solution to the laser waveform instability problem is described and demonstrated, involving both new algorithms and hardware elements. These algorithms are primarily data-driven, without a priori knowledge of waveform and sensor position, representing a crucial step in developing a robust imaging system. These techniques perform well on waveform errors, but not on external phase errors such as turbulence or vibration. As a first step towards mitigating phase errors of this type, we have developed a balanced, quadrature phase, laser vibrometer to work in conjunction with our SAIL system to measure and compensate for relative line of sight motion between the target and transceiver. We describe this system and present a comparison of the vibrometer-measured phase error with the phase error inferred from the SAIL data.
Several lidar campaigns have been performed in support of calibration/validation of DMSP SSM/T-2 microwave water vapor sensors. Calibration capabilities were demonstrated by performing radiative transfer calculations based on water vapor profiles measured by lidar. The calculations agreed with collocated SSM/T-2 atmospheric channel measurements to better than 1K RMS, whereas discrepancies were frequently greater than 2 K for radiative transfer based on conventional AIR and Vaisala radiosonde profiles. The improved capability is attributed to the new ability to measure water vapor from 8 to 14 km altitude. Conventional radiosondes tend to be unresponsive to water vapor at the low temperatures typical of altitudes above 8 km.
Multi-pathogen biosensors that take advantage of sandwich immunoassay detection schemes and utilize conventional fluorescent dye reporter molecules are difficult to make into extremely compact and autonomous packages. The development of a multi-pathogen, immunoassay-based, fiber optic detector that utilizes varying sized fluorescent semiconductor quantum dots (QDs) as the reporter labels has the potential to overcome these problems. In order to develop such a quantum dot-based biosensor, it is essential to demonstrate that QDs can be attached to antibody proteins, such that the specificity of the antibody is maintained. We have been involved in efforts to develop a reproducible method for attaching QDs to antibodies for use in biodetection applications. We have synthesized CdSe/ZnS core-shell QDs of differing size, functionalized their surfaces with several types of organic groups for water solubility, and covalently attached these functionalized QDs to rabbit anti-ovalbumin antibody protein. We also demonstrated that these labeled antibodies exhibit selective binding to ovalbumin antigen. We characterized the QDs at each step in the overall synthesis by UV-VIS absorption spectroscopy and by picosecond (psec) transient photoluminescence (TPL) spectroscopy. TPL spectroscopy measurements indicate that QD lifetime depends on the size of the QD, the intensity of the optical excitation source, and whether or not they are functionalized and conjugated to antibodies. We describe details of these experiments and discuss the impact of our results on our biosensor development program.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.