Spintronics has attracted considerable interest for next-generation nano-devices because of their low power consumption, unlimited endurance, and non-volatility. Although spin-transfer-torque and spin-orbit-torque are widely used magnetization switching mechanisms, they are still limited by high power consumption and low switching speed. On the other hand, optically assisted magnetization switching using ultrashort laser pulses is able to achieve sub-picosecond switching operation. However, ferromagnetic materials require multiple laser pulses to switch their magnetization, that leads to higher energy consumption as compared to ferrimagnetic materials. In this paper, optically assisted magnetization dynamics in Ho-Fe-Co ferromagnetic nanostructure has been investigated using atomistic spin and monte carlo simulations. Ho has a relatively high magnetic moment and enhances magnetic anisotropy in Ho-Fe-Co nanostructure to achieve single shot and energy-efficient magnetization switching at room temperature.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.