Significance: Shear wave optical coherence elastography is an emerging technique for characterizing tissue biomechanics that relies on the generation of elastic waves to obtain the mechanical contrast. Various techniques, such as contact, acoustic, and pneumatic methods, have been used to induce elastic waves. However, the lack of higher-frequency components within the elastic wave restricts their use in thin samples. The methods also require moving parts and/or tubing, which therefore limits the extent to which they can be miniaturized.
Aim: To overcome these limitations, we propose an all-optical approach using photothermal excitation. Depending on the absorption coefficient of the sample and the laser pulse energy, elastic waves are generated either through a thermoelastic or an ablative process. Our study aimed to experimentally determine the boundary between the thermoelastic and the ablative regimes for safe all-optical elastography applications.
Approach: Tissue-mimicking graphite-doped phantoms and chicken liver samples were used to investigate the boundary between thermoelastic and ablative regimes. A pulsed laser at 532 nm was used to induce elastic waves in the samples. Laser-induced elastic waves were detected using a line field low coherence holography instrument. The shape of the elastic wave amplitude was analyzed and used to determine the transition point between thermoelastic and ablative regimes.
Results: The transition from the thermoelastic to the ablative regime is accompanied by the nonlinear increase in surface wave amplitude as well as the transformation of the wave shape. Correlation between the absorption coefficient and the transition point energy was experimentally determined using graphite-doped phantoms and applied to biological samples ex vivo.
Conclusions: Our study described a methodology for determining the boundary region between thermoelastic and ablative regimes of elastic wave generation. These can be used for the development of a safe method for completely noncontact, all-optical microscale assessment of tissue biomechanics using laser-induced elastic waves.
Wave-based optical coherence elastography (OCE) is a rapidly emerging technique for localized elasticity assessment of tissues due to its high displacement sensitivity and simple implementation. This method does not require prior knowledge of mechanical load characteristics, such as the applied preload and applied stress on the sample. Currently, noncontact wave excitation has been accomplished with various methods, such as focused micro air-pulse and acoustic techniques. However, they are limited by the inability to target specific tissues and usually only image the transversely propagating elastic wave, which generally requires scanning the probe beam across the sample. In addition, the upper frequency components of the elastic waves are limited to a few kilohertz, which are sensitive to boundary conditions due to their long wavelengths. In this study, we demonstrated that rapid vaporization of perfluorocarbon inside dye nanoparticles that was excited by a pulsed laser excitation, termed “nanobombs”, can produce high frequency longitudinal elastic waves in tissue mimicking phantoms. The nanoparticles were excited by a 1064 nm pulsed laser, which was co-focused with the OCT probe beam. The longitudinal elastic waves, which propagated axially (i.e., following the optical path), were directly imaged by a phase-sensitive Fourier domain mode-locked based OCT system. The detected elasticity was validated with well-established air-pulse OCE and the “gold standard” uniaxial mechanical testing. The results demonstrate the feasibility of performing nanobomb elastography in tissue with the potential for targeting specific tissues and producing longitudinal elastic waves with high frequency content.
Laser-induced thermoelastic deformation can be an effective way to induce disturbances in soft biological tissues in elastography and photoacoustcs. A laser pulse results in rapid temperature increase, thermoelastic expansion and generation of compressional and shear waves in the tissue. After the expansion and wave attenuation, a quasi-steady state is reached. For several medical applications of elastography, laser-induced thermoelastic deformation has been proposed as a way to produce strain in the tissue to assess tissue mechanical properties. In combination with measuring tissue response using optical coherence tomography, such an approach could be an effective method for noncontact measurement of tissue mechanical properties.
In our previous works we have derived a three-dimensional analytical solution for the quasi-steady state, when the tissue reaches equilibrium after the acoustic and shear waves have decayed. In this work, we consider dynamic tissue response at the moment of time immediately after the laser pulse. In the frequency domain, an analytical expression has been derived for the thermoelastic displacements and stresses caused by absorption of an axially symmetric laser beam. The solution was obtained for the Gaussian radial temperature profile on the upper surface of a viscoelastic half-space. The influence of the shear elastic properties on the elastic wave propagation and displacement profiles was evaluated. The proposed analytical solution could be used to model mechanical and photoacoustic tissue response to laser excitation, as well as to investigate the mechanism of photomechanical laser ablation.
This study was supported by NIH grant R01EY022362.
Colon pathologies including colon cancer and ulcerative colitis afflict hundreds of thousands of people in the United States. Clinical detection of colon diseases is generally performed through colonoscopy. However, these methods usually lack the sensitivity or resolution to detect diseased tissue at early stages. Even high resolution optical techniques such as confocal microscopy and optical coherence tomography (OCT) rely on structural features to detect anomalies in tissue, which may not be sufficient for early disease detection. If changes in tissue biomechanical properties precede morphological changes in tissue physiology, then mechanical contrast would enable earlier detection of disease. In this work, we utilized optical coherence elastography (OCE) to assess the biomechanical properties of healthy, cancerous, and colitis tissue. Additionally, the optical properties of each sample were also assessed as a secondary feature to distinguish tissue types. The Young’s modulus, as measured by the propagation of an elastic wave, of the healthy, cancerous, and colitis tissue was 10.8 ± 1.0 kPa, 7.12 ± 1.0 kPa, and 5.1 ± 0.1 kPa, respectively. The variations in the OCT signal intensity over depth, as measured by the slope-removed standard deviation of each A-scan was 5.8 ±.0.3 dB, 5.1 ± 0.4 dB, and 5.5 ± 0.2 dB for healthy, cancerous, and colitis tissue, respectively. This work shows OCT structural imaging combined with OCE can detect minute changes in colon tissue optical scattering and elastic properties, which may be useful for detection various colon diseases, such as colitis and colon cancer.
Wave-based optical elastography is a rapidly emerging technique for viscoelastic assessment of tissues due to its high displacement sensitivity and simple implementation. This method does not require prior knowledge of mechanical load characteristics, such as the applied preload and applied stress on the sample. However, current truly noncontact excitation methods are limited by their inability to produce broadband waves with high frequency content. Lower frequency wave content is constrained by boundary conditions, and thus, requires specifically tailored mechanical models that consider the sample geometry. In this work, we demonstrate that rapid vaporization of perfluorocarbon inside dye nanoparticles (NP) with a pulsed laser can produce high frequency and broadband elastic waves in tissue mimicking agar phantoms. As a comparison, a focused air-pulse was used as an alternative excitation method. The elastic waves were imaged by an ultra-fast low-coherence line-field holography system. Our results show that the NPs produced elastic waves with frequencies up to ~9 kHz, while the air-pulse was only able to produce waves with frequency content up to ~2 kHz. The elastic wave dispersion curves were fitted to the analytical solution of a Rayleigh wave model to quantify viscoelasticity. Analysis of the broadband high-frequency waves produced by the NPs yielded more accurate quantification of the sample viscoelasticity, demonstrating the benefits of optically excited elastic waves.
Laser induced elastic waves in soft media have great potential to characterize tissue biomechanical properties. The instantaneous increase in local temperature caused by absorption of laser energy leads to a mechanical perturbation in the sample, which can then propagate as a pressure (or an elastic) wave. The generation of the elastic wave can be via thermoelastic or ablative processes depending on the absorption coefficient of the sample and incident laser fluence. It is critical to differentiate between these regimes because only the thermoelastic regime is useful for nondestructive analysis of tissues. To investigate the transition point between these two different regimes, we induced elastic waves in tissue mimicking agar phantoms mixed with different concentrations of graphite powder. The elastic waves were excited by a 532nm pulsed laser with a pulse duration of 6 ns. The fluence of the pulsed laser was tuned from 0.08 J/cm2 to 3.19 J/cm2 , and the elastic wave was captured by ultra-fast line-field low coherent holography system capable of single-shot elastic wave imaging with nanometer-scale displacement sensitivity. Different concentrations of graphite powder enabled excitation in sample with controlled and variable attenuation coefficient, enabling measurement of the transition between the thermoelastic and ablative regimes. The results show that the transition from thermoelastic to ablative generated waves was 0.75 J/cm2 and 1.84 J/cm2 for phantoms with optical attenuation coefficients of 6.64±0.32 mm-1 and 26.19±1.70 mm-1, respectively. Our results show promise for all optical biomechanical characterization of tissues.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.