Today, vision systems for robots had been widely applied to many important applications. But 3-D vision systems for industrial uses should face to many practical problems. Here, a vision system for bio-production has been introduced.
Clone seedlings plants are one of the important applications of biotechnology. Most of the production processes of clone seedlings plants are highly automated, but the transplanting process of the small seedlings plants cannot be automated because the shape of small seedlings plants are not stable and in order to handle the seedlings plants it is required to observe the shapes of the small seedlings plants. In this research, a robot vision system has been introduced for the transplanting process in a plant factory.
In the plant factory of crone seedlings, most of the production processes are highly automated, but the transplanting process of the small seedlings is hard to be automated because the figures of small seedlings are not stable and to handle the seedlings it is required to observe the shapes of the small seedlings. Here, a 3-D vision
system for robot to be used for the transplanting process in a plant factory has been introduced. This system has been employed relative stereo method and slit light measuring method and it can detect the shape of small seedlings and decides the cutting point. In this paper, the structure of the vision system and the image processing
method for the system is explained.
The crone seedlings have unstable form and it is hard to handle. In order to transplant crone seedlings automatically, the functions of 3D-shape recognition and force control of grippers are indispensable. We have introduced the new handling technology which combines the 3D-mesurement using the relative stereo method and gripping method by gripping stroke control for high elasticity forceps structure. In this gripping method, the gripping force is controlled according to
the shoot diameter which is measured by 3d-mesurment of relative stereo method. The experimental crone seedlings transplant system using the new handling technique has been shown.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.