Information on land use and land cover changes is considered as a foremost requirement for monitoring environmental change. Developing change detection methodology in the remote sensing community is an active research topic. However, to the best of our knowledge, no research has been conducted so far on the application of random forest regression (RFR) and support vector regression (SVR) for natural hazard change detection from high-resolution optical remote sensing observations. Hence, the objective of this study is to examine the use of RFR and SVR to discriminate between changed and unchanged areas after a tsunami. For this study, RFR and SVR were applied to two different pilot coastlines in Indonesia and Japan. Two different remotely sensed data sets acquired by Quickbird and Ikonos sensors were used for efficient evaluation of the proposed methodology. The results demonstrated better performance of SVM compared to random forest (RF) with an overall accuracy higher by 3% to 4% and kappa coefficient by 0.05 to 0.07. Using McNemar’s test, statistically significant differences (Z≥1.96), at the 5% significance level, between the confusion matrices of the RF classifier and the support vector classifier were observed in both study areas. The high accuracy of change detection obtained in this study confirms that these methods have the potential to be used for detecting changes due to natural hazards.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.