We present a comprehensive investigation of Raman scattering (RS) and supercontinuum (SC) generation in high-index doped silica glass integrated optical waveguides under diverse femtosecond pumping wavelengths and input polarization states. We first report the observation based on a confocal Raman microscope of new Raman peaks different from fused silica at 48 THz and 75 THz, respectively. We then demonstrate broadband supercontinuum generation from 700 nm to 2500 nm when pumping into the anomalous dispersion regime at 1200 nm, 1300 nm, and 1550 nm, respectively. Conversely, narrower SC spectra were generated when pumping in the normal dispersion regime at 1000 nm of self-phase modulation and optical wave breakup. A good agreement is found with numerical simulations of a nonlinear Schrödinger equation including the new Raman response. We also study the impact of the TE/TM polarization modes of the integrated waveguide on SC generation.
We review recent works in optical signal shaping and advanced characterization techniques within the framework of nonlinear fiber propagation. Specifically, we focus on the development of characterization methods based on the dispersive Fourier transform to monitor incoherent spectral broadening processes with enhanced resolution and sensitivity. In this framework, we also discuss recent studies of modulation instability in a noise-driven regime. Paired with suitable optical monitoring techniques, we show that controlled coherent optical seeding can be leveraged via several machine learning approaches to tailor and optimize incoherent spectral broadening dynamics.
Supercontinuum generation (SG) in fused silica photonic crystal fibers (PCFs) having a core infiltrated with liquid benzene is analyzed. Three PCF designs, with dimensions and chromatic dispersion optimized for SG using off-the-shelf femtosecond pulse lasers (1560 nm, 90 ps), are proposed. F1 fiber with lattice constant Λ = 1.5 μm and linear filling factor f = 0.45 has all-normal dispersion and offers SG in the 700- to 2000-nm band at relative power levels within 15 dB when pumped with 3 nJ pulses. F2 fiber (Λ = 1.5 μm, f = 0.6) enables SG in an anomalous dispersion regime, covering 600 to 2600 nm spectral range at relative power levels within 30 dB when pumped with low-energy pulses (1 nJ). The F3 fiber (Λ = 2.5 μm, f = 0.6) also exhibits mostly anomalous dispersion and makes possible SG in a very broad 600 to 3500 nm range at relative power levels within 30 dB when pumped with 2 nJ pulses.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.