Differential absorption lidar (DIAL) feasible to detect methane is developed on a pair of powerful pulsed (10μJ) laser diodes emitting on 1,56μm -1,66μm wavelengths. Methane is a potent greenhouse gas that is responsible for the present enhancement of the greenhouse effect. The spectral range of wavelengths utilized by the laser diodes matches an intensive second overtone of the methane molecule pure of interfering spectra of the other major atmospheric gases. Spectroscopic applications of the powerful laser diodes were generally limited by their broad laser line. Though spectrally unresolved, multiple resonance absorption lines modulate the laser radiation propagating in the atmosphere. The intensity of integral absorption is assessed combining the linestrengths taken from HITRAN database with the laser spectral line. The resultant absorption spectrum is immune to pressure variation, while the dependence on temperature is found to be within 10% error. The reported DIAL technique utilizes the advantage of simple operation within lidar ranges of 0.5- 5km prospective for reconnaissance of atmospheric methane and climatic monitoring.
The spectral range of 0.85 - 0.9μm wavelengths utilized by laser diode (LD) technology contains a relatively intensive spectrum of third rovibrational overtone of the water molecule, pure of interfering spectra of the other major atmospheric gases. We developed a spectroscopic application of pulsed 100W LDs generally limited by their broad, multimode laser line. In fact, their powerful laser radiation propagating in the atmosphere is modulated significantly by multiple resonance absorption lines. The magnitude of the integral absorption pattern is assessed combining theoretical and experimental calibration and using HITRAN database. The resultant absorption spectrum is found to be unsaturated, providing a great dynamic range of measurement of atmospheric humidity within 15% random error of lidar returns ranging to 2km. The reported DIAL technique which utilizes the advantage of direct detection of the lidar profiles and simple operation is prospective for the framework of atmospheric and climatic monitoring.
Modulated optical reflectance (MOR) technique is employed for defectoscopy and structural analysis of La2/3Sr1/3MnO3(LSMO) ferromagnetic nanolayers. The optical reflectance is affected by the change of free charge carrier density due to
periodic photothermal modulation described by Drude effect. A dual wavelength setup of a pulsed heating laser and a
probe CW laser, whereas the laser focal spots are precisely aligned on the scanned sample surface, provides electrical
signal proportional to the variation of optical reflectance at each measurement point. The probe beam is modulated
selectively by reflection without interference by the substrate properties or external fields. It is shown theoretically and
experimentally that MOR signal is proportional to the thermal derivative of magnetoresistance. The described contactless
measurement may find important application in investigation of a range of new magnetoelectric devices.
We present a contribution to the development of the laser heterodyne method of nondestructive material analysis
employing photothermal displacement (PTD) probe. PTD is a dominant factor of the photothermal effect in metals and
semiconductors, where the derived linear dependence on absorbed energy exhibits a fingerprint of their physical
properties. Theoretical consideration of the case of transparent probe is accomplished extending thermal diffusion model.
Laser double heterodyne detection is verified for opaque and transparent probes, and in the exclusive case of silicon. The
achieved resolution of photothermal displacement is less than 10-12 m well above the limits of heterodyne measurement.
KEYWORDS: Digital signal processing, LIDAR, Signal processing, Neural networks, Semiconductor lasers, Signal detection, Absorption, Data acquisition, Atmospheric monitoring, Denoising
The paper refers to novel aspects of application of the laser radar (LIDAR) to differential absorption spectroscopy and atmospheric gas monitoring, accenting on the advantages of the class of powerful pulsed laser diodes. The implementation of the task for determination of atmospheric humidity, which is a major green house gas, and the set demands of measurement match well the potential of the acquisition system. The projected system is designed by transmission of the operations to Digital Signal Processing (DSP) module allowing preservation of the informative part of the signal by real-time pre-processing and following post-processing by personal computer.
High-power pulsed laser diodes are employed for determining atmospheric humidity and methane. The proposed DIAL method optimizes the spectral properties of laser radiation within the molecular absorption bands of 0.86 - 0.9 μm of these major greenhouse gases. The explicit absorption spectrum is explored by computational convolution method based on reference data on spectral linestrengths modulated by the characteristic broad laser line of the selected laser diodes. The lidar scheme is ultimately compact, of low-energy consumption and suggests a large potential for ecological monitoring.
Investigation of new aspects of application of pulsed quantum well (In)GaAs/AlGaAs diode lasers to atmospheric spectroscopy and lidar remote sensing is reported. The presented method utilizing these powerful multichipstack diode lasers of broad radiation line is approved theoretically and experimentally for monitoring of atmospheric humidity. Molecular absorption of gas species in the investigated spectral band 0.85 - 0.9 micrometer implemented by laser technology initiates further development of prospective DIAL analysis. A mobile lidar system is realized, employing optimal photodetection based on computer-operated boxcar and adaptive digital filter processing of the lidar signal in the analytical system. Aerosol profile exhibiting cloud strata in open atmosphere by testing of the sensor is demonstrative of the efficiency and high sensitivity of long-range sounding.
We report new aspects of application of pulsed GaAs diode lasers, concerning absorption spectroscopy of water vapor of third oscillatory molecular overtone 8990 - 9012 angstroms, and Mie-scattering lidar signal in the 15 km range. It is accessible by the power characteristics of a system utilizing the powerful `chip-stack' GaAs diode lasers, employing optimal photodetection technique based on an analyzing system with computer operated boxcar. Data on atmospheric aerosol backscatter signal acquired by DL lidar are presented with relevance to the potential of complex atmospheric remote sensing. GaAs diode lasers, with radiation matching water vapor spectrum of absorption- coefficients of 0.5 - 5 km-1 in Beer's law, are shown feasible for DIAL monitoring of atmospheric humidity.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.