Computer vision for biomedical imaging applications is fast developing and at once demanding field of computer science. In particular, computer vision technique provides excellent results for detection and segmentation problems in tomographic imaging. X-ray phase contrast Tomography (XPCT) is a noninvasive 3D imaging technique with high sensitivity for soft tissues. Despite a considerable progress in XPCT data acquisition and data processing methods, the problem in degradation of image quality due to artifacts remains a widespread and often critical issue for computer vision applications. One of the main problems originates from a sample alteration during a long tomographic scan. We proposed and tested Simultaneous Iterative Reconstruction algorithm with Total Variation regularization to reduce the number of projections in high resolution XPCT scans of ex-vivo mouse spinal cord. We have shown that the proposed algorithm allows tenfold reducing the number of projections and, therefore, the exposure time, with conservation of the important morphological information in 3D image with quality acceptable for computer graphics and computer vision applications. Our research paves a way for more effective implementation of advanced computer technologies in phase contrast tomographic research.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.