Ever since the early 1980s, surgical robotics/robot assisted surgeries have gained more of a foothold in modern treatments. The extra guidance/precision that surgical robotics have provided in operations has been indispensable. The next step for surgical robotics is MRI compatibility to provide close to real time intraoperative imaging for space constrained operations. The robotic component artifact influence over the region of surgical interest (ROSI) is to be mitigated for complications in addition to providing accurate guidance for the surgeon. This study defines a large MRI phantom design for specimen submersion to verify/quantify artifact generation from robotic components as well as provide a better visualization platform for robotic performance during preliminary testing and evaluation. The main topics of focus for the phantom design are fluid selection, phantom shape, phantom containment material, and 3D printed artifact measurement evaluation grids. The MRI scans were conducted using a 3T Magnetom Prisma MRI. Three scan types were selected: T1 weighted, T2 weighted, and SGE (spoiled gradient echo). The investigated phantom fluids were a solution of nickel chloride and sodium chloride (the ACR phantom, 10mM NiCl2 75mM NaCl), two salt doped distilled water (13g, 26g), and food grade mineral oil. The oil and ACR phantom outperformed the doped water with similar SNR/CNR returns (SGE: SNR/CNR 250/240/57, PIU 83/60/85). The phantom containment material was inconclusive due to motion artifact production and will be rerun with alternative fluid. The 3D printed artifact measurement grid was printed in PETG as a cost-effective substitute as PLA started warping the grid after extended water exposure (0.2mm). After N4 implementation, the image uniformity was determined through the ACR method while the SNR/CNR values were calculated in Fiji. The results illustrated the preferred environmental constraints according to the main topics: food grade mineral oil, cylindrical, motion artifact interference, and PETG 3D printed grid.
Image guided spinal procedure accuracy is dynamic during surgery. Intervertebral motion during surgery drastically effects the temporal accuracy of a procedure. A hand-held stereovision (HHS) system has been employed in previous studies for intraoperative data collection. These data can be used to deform a CT scan to re ect the current spinal posture. These methods are criticized due to the large exposure required for data collection. Currently, to collect HHS data the spine is exposed out to the lateral boundary of the posterior surface of the transverse process. In modern pedicle screw placements, and laminectomies the exposure is smaller. For this method to remain contemporary, a more robust data collection scheme using a smaller exposure should be employed. In this study, simulated narrow exposures were created by manually segmenting HHS data from a cadaver pig. These 3 datasets are created to drive an existing level-wise registration model to generate 3 updated CTs (uCT). The 3 HHS datasets were manually segmented in the following ways: out to the transverse process, out to the facet joints, and out to the lamina. A fiducial registration error was computed from manually identified mini-screw fiducials in each uCT. The mean values for L2 norms for the transverse process segmentation data, facet segmentation data, and lamina segmentation are 2:04 ± 1:10mm,3:18 ± 2:18mm, and 4:59 ± 2:28mm respectively. Median values are 1:82mm, 2:25mm, 4:35mm respectively. This data shows the need for a more robust deformation model, and HHS system if we wish to have sub 2mm registration accuracy with narrow exposures.
Tracked intraoperative ultrasound (iUS) is growing in use. Accurate spatial calibration is essential to enable iUS navigation. Utilizing sterilizable probes introduces new challenges that can be solved by time-of-surgery calibration that is robust, efficient and user independent performed within the sterile field. This study demonstrates a smart line detection scheme to perform calibration based on video acquisition data and investigates the effect of pose variation on the accuracy of a plane-based calibration. A user-independent US video is collected of a calibration phantom and a smart line detection and tracking filter applied to the video-tracking data pairs to remove poor calibration candidates. A localized point target phantom is imaged to provide a TRE assessment of the calibration. The tracking data is decoupled into 6 degrees of freedom and these ranges iteratively reduced to study the effect on the spatial calibration accuracy in order to indicate the sufficient amount of pose variation required during video acquisition to maintain high TRE accuracy. This work facilitates a larger development toward user-independent, video based iUS calibration at the time of surgery.
Pre-operative MRI with gadolinium-based contrast agents (Gd-MRI) is a central feature in surgical planning and intra-surgical navigation of glioma, yet brain movement during the surgical procedure can degrade the accuracy of these pre-operative images. Fluorescence guided neurosurgery is a technique which can complement MRI guidance by providing direct visualization of the tumor during surgery, and several agents either used routinely or under clinical development have shown effective tumor discrimination and impact on surgical outcomes. We have built a multi-spectral kinetic imaging system to acquire behavior of fluorophores overtime in animal models. Here, we exhibit this fluorescence kinetic imaging system and report its performance with tissue-simulating phantoms with multiple fluorophores. Also reported is our first experience with multiple fluorescent contrast agents in a novel oncopig model.
Fluorescence cryo-imaging is a high-resolution optical imaging technique that produces 3-D whole-body biodistributions of fluorescent molecules within an animal specimen. To accomplish this, animal specimens are administered a fluorescent molecule or reporter and are frozen to be autonomously sectioned and imaged at a temperature of -20°C or below. Thus, to apply this technique effectively, administered fluorescent molecules should be relatively invariant to low temperature conditions for cryo-imaging and ideally the fluorescence intensity should be stable and consistent in both physiological and cryo-imaging conditions. Herein, we assessed the mean fluorescence intensity of 11 fluorescent contrast agents as they are frozen in a tissue-simulating phantom experiment and show an example of a tested fluorescent contrast agent in a cryo-imaged whole pig brain. Most fluorescent contrast agents were stable within ~25% except for FITC and PEGylated FITC derivatives, which showed a dramatic decrease in fluorescence intensity when frozen.
In open cranial procedures, the accuracy of image guidance using preoperative MR (pMR) images can be degraded by intraoperative brain deformation. Intraoperative stereovision (iSV) has been used to acquire 3D surface profile of the exposed cortex at different surgical stages, and surface displacements can be extracted to drive a biomechanical model as sparse data to provide updated MR (uMR) images that match the surgical scene. In previous studies, we have employed an Optical Flow (OF) based registration technique to register iSV surfaces acquired from different surgical stages and estimate cortical surface shift throughout surgery. The technique was efficient and accurate but required manually selected Regions of Interest (ROI) in each image after resection began. In this study, we present a registration technique based on Scale Invariant Feature Transform (SIFT) algorithm and illustrate the methods using an example patient case. Stereovision images of the cortical surface were acquired and reconstructed at different time points during surgery. Both SIFT and OF based registration techniques were used to estimate cortical shift, and extracted displacements were compared against ground truth data. Results show that the overall errors of SIFT and OF based techniques were 0.65±0.53 mm and 2.18±1.35 mm in magnitude, respectively, on the intact cortical surface. The OF-based technique generated inaccurate sparse data near the resection cavity region, whereas SIFT-based technique only generated accurate sparse data. The computational efficiency was ⪅0.5 s and ⪆20 s for SIFT and OF based techniques, respectively. Thus, the SIFT-based registration technique shows promise for OR applications.
Registration of preoperative or intraoperative imaging is necessary to facilitate surgical navigation in spine surgery. After image acquisition, intervertebral motion and spine pose changes can occur during surgery from instrumentation, decompression, physician manipulation or correction. This causes deviations from the reference imaging reducing the navigation accuracy. To evaluate the ability to use the registration between stereovision surfaces in order to account for this intraoperative spine motion through a simulation study. Co-registered CT and stereovision surface data were obtained of a swine cadaver’s exposed lumbar spine in the prone position. Data was segmented and labeled by vertebral level. A simulation of biomechanically bounded motion was applied to each vertebral level to move the prone spine to a new position. A reduced surface data set was then registered level-wise back to the prone spines original position. The average surface to surface distance was recorded between simulated and prone positions. Localized targets on these surfaces were used for a calculation of target registration error. Target registration error increases with distance between surfaces. Movement exceeding 2.43 cm between stereovision acquisitions exceeds registration accuracy of 2mm. Lateral bending of the spine contributes most to this effect compared to axial rotation and flexion-extension. In conclusion, the viability of using stereovision-to-stereovision registration to account for interoperative motion of the spine is shown through this simulation. It is suggested the distance of spine movement between corresponding points does not surpass 2.43 cm between stereovision acquisitions.
Miniature Screws, often used for fiducials, are currently localized on DICOM images manually. This time-consuming process can add tens of minutes to the computational process for registration, or error analysis. Through a series of morphological operations, this localization task can be completed in a time much less than a second when performed on a standard laptop. Two image sets were analyzed. The first data set consisted of six intraoperative CT (iCT) scans of the lumbar spine of both cadaver and live porcine samples. This dataset includes not only implanted mini-screws, but other metal instrumentation. The second dataset consists of 6 semi-rigidly deformed CT (uCT) scans of the lumbar spine of the same animals. This dataset has been intensity down sampled from 16 bits to eight bits as a pre-processing step. Also, due to other deformation steps, other artifacts are apparent. Both datasets show at least 18 mini-screws which were rigidly implanted in the lumbar vertebrae. Each vertebra has at least three mini-screws implanted. These images were processed as follows: projection image forming via maximum row values, thresholding, opening, non-circular regions were removed, and circular regions were eroded. Leaving voxel locations of the center of each mini-screw. The aforementioned steps can be completed with a mean computational efficiency of .0365 seconds. Which is an unobtainable time for manual localization. Even by the most skilled. The true positive rates of the iCT and uCT datasets were 96.
Background: Successful navigation in spine surgeries relies on accurate representation of the spine’s interoperative pose. However, its position can move between preoperative imaging and instrumentation. A measure of this motion is a preoperative-to-intraoperative change in lordosis. Objective: To investigate the effect this change has on navigation accuracy and the degree to which an interoperative stereovision system (iSV) for intraoperative patient registration can account for this motion. Methods: For six live pig specimens, a preoperative CT (pCT) was obtained of the lumbar spine in supine position and an interoperative CT in the prone position. Five to six iSV images were intraoperatively acquired of the exposed levels. A fiducial-based registration was performed on a navigation system with the pCT. Separately, the pCT was deformed to match iSV surface data to generate an updated CT (uCT). Navigational accuracy of both the commercial navigation and iSV systems was determined by tracked fiducials and landmarks. Change in lordosis Cobb angle between supine and prone positions was calculated representing preoperative-to-interoperative change in spine pose. Results: The preoperative-to-interoperative change ranged from 12 to 41°. Registration accuracy varied by 4.8 and 1.5 mm for the commercial system (6.2+-1.9 mm) and iSV (3.0+0.6 mm) respectively. Rank correlation shows strong association between increased registration error and positional change for the commercial system (correlation of 0.94, P=0.02) while minimal association for iSV (0.09, P=0.92). Conclusion: Change in spinal pose effects navigational accuracy of commercial systems. iSV shows promise in accounting for these changes given its accuracy is uncorrelated with pose change.
As rapidly accelerating technology, fluorescence guided surgery (FGS) has the potential to place molecular information directly into the surgeon’s field of view by imaging administered fluorescent contrast agents in real time, circumnavigating pre-operative MR registration challenges with brain deformation. The most successful implementation of FGS is 5-ALAPpIX guided glioma resection which has been linked to improved patient outcomes. While FGS may offer direct in-field guidance, fluorescent contrast agent distributions are not as familiar to the surgical community as Gd-MRI uptake, and may provide discordant information from previous Gd-MRI guidance. Thus, a method to assess and validate consistency between fluorescence-labeled tumor regions and Gd-enhanced tumor regions could aid in understanding the correlation between optical agent fluorescence and Gd-enhancement. Herein, we present an approach for comparing whole-brain fluorescence biodistributions with Gd-enhancement patterns on a voxel-by-voxel basis using co-registered fluorescent cryo-volumes and Gd-MRI volumes. In this initial study, a porcine-human glioma xenograft model was administered 5-ALA-PpIX, imaged with MRI, and euthanized 22 hours following 5-ALA administration. Following euthanization, the extracted brain was imaged with the cryo-macrotome system. After image processing steps and non-rigid, point-based registration, the fluorescence cryo-volume and Gd-MRI volume were compared for similarity metrics including: image similarity, tumor shape similarity, and classification similarity. This study serves as a proof-of-principle in validating our screening approach for quantitatively comparing 3D biodistributions between optical agents and Gd-based agents.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.