Haze is the result of the interaction between specific climate and human activities. When observing objects in hazy conditions, optical system will produce degradation problems such as color attenuation, image detail loss and contrast reduction. Image haze removal is a challenging and ill-conditioned problem because of the ambiguities of unknown radiance and medium transmission. In order to get clean images, traditional machine vision methods usually use various constraints/prior conditions to obtain a reasonable haze removal solutions, the key to achieve haze removal is to estimate the medium transmission of the input hazy image in earlier studies. In this paper, however, we concentrated on recovering a clear image from a hazy input directly by using Generative Adversarial Network (GAN) without estimating the transmission matrix and atmospheric scattering model parameters, we present an end-to-end model that consists of an encoder and a decoder, the encoder is extracting the features of the hazy images, and represents these features in high dimensional space, while the decoder is employed to recover the corresponding images from high-level coding features. And based perceptual losses optimization could get high quality of textural information of haze recovery and reproduce more natural haze-removal images. Experimental results on hazy image datasets input shows better subjective visual quality than traditional methods. Furthermore, we test the haze removal images on a specialized object detection network- YOLO, the detection result shows that our method can improve the object detection performance on haze removal images, indicated that we can get clean haze-free images from hazy input through our GAN model.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.