GaN-based semiconductors attract much attention owing to the theoretically high Curie temperature of GaN-based diluted magnetic semiconductors and novel spin-orbit coupling(SOC) properties due to the strong polarization electric field. To overcome the conductance mismatch issue in a two-dimensional electron gas (2DEG) system, we take an ultrathin AlN layer at the hetero-interface as a barrier to form high-quality 2DEG in the triangular quantum well and a tunneling barrier for the spin injection. As for spin relaxation, owing to the canceled spin–orbit coupling (SOC), the spin relaxation time as long as 311 ps in InGaN/GaN multiple quantum wells is obtained at room temperature, being much longer than that in bulk GaN. Further, spin-polarized carrier transfer and spin relaxation processes in 2DEG of the InGaN/GaN QW were investigated by photon-energy dependent TRKR measurements.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.