The interface of targeting molecules that can recognize and identify specific biomolecules with highly luminescent semiconductor nanocrystals or quantum dots can lead to a novel and powerful new class of probes for studying biomolecules in real-time or for imaging and detecting diseases. We describe the rationale design of optical nanoprobes by using fluorescent semiconductor quantum dots with targeting molecules (TMs)-identified using phage display screening. Quantum dots are nanometer-sized particles with unique and tunable optical properties. They offer numerous optical advantages over traditional organic fluorophores in biological analysis and detection (e.g., photostability, continuous absorption profile).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.