Ionospheric phase errors degrade high-resolution radio images below
100 MHz, and they differ significantly from the tropospheric errors
which dominate at high frequencies. The ionosphere is so high
(~400 km) and the VLA primary beam is so wide (~0.2 rad) that
the intersection of the beam with the ionospheric screen is larger
than the "isoplanatic patch" size, a phase coherent region on the
sky. Antenna-based calibration techniques developed at higher
frequencies cannot be used because ionospheric phase errors vary
significantly across the field-of-view of each antenna. This paper
describes the "field-based calibration" technique adopted for the
74 MHz VLA Low--frequency Sky Survey (VLSS) being made with the 10 km
"B" configuration. This technique is useful for a range of array
sizes but fails on baselines longer than the linear size of the
isoplanatic patch, a few 10s of km at 74 MHz. Implications for
designing larger low-frequency arrays are discussed.
The 74 MHz system on the National Radio Astronomy Observatory's Very
Large Array (VLA) has opened a high-resolution, high-sensitivity
window on the electromagnetic spectrum at low frequencies. It
provides us with a unique glimpse into both the possibilities and
challenges of planned low-frequency radio interferometers such as
LOFAR, the LWA, and the SKA. Observations of bright, resolved radio
sources at 74 MHz provide new scientific insights into the structure,
history, and energy balances of these systems. However many of these
scientifically motivated observations will also be critical to testing
the scientific fidelity of new instruments, by providing a set of
well-known standard sources. We are also using the 74 MHz system to
conduct a sky survey, called the VLA Low-frequency Sky Survey (VLSS).
When complete it will cover the entire sky above -30 degrees
declination, at a 5σ sensitivity of 0.5 Jy/bm-1, and a resolution of 80" (B-configuration). Among its various uses, this
survey will provide an initial grid of calibrator sources at low
frequency. Finally, practical experience with calibration and data
reduction at 74 MHz has helped to direct and shape our understanding
of the design needs of future instruments. In particular, we have
begun experimenting with angle-variant calibration techniques which
are essential to properly calibrate the wide field of view at low
frequencies.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.