In this computational study we examine the behaviour of mixed-refractive index colloidal clusters. The clusters consist of bonded collections of spherical nanospheres with different refractive indices. The behaviour of these clusters in optical traps varies depending on the numbers of particles involved and the overall symmetry of the cluster. The symmetry can be varied by changing the refractive indices. It has been shown that breaking the symmetry of a cluster by, for example, introducing a single high refractive index impurity can produce a pronounced impact on the dynamics of the cluster in an optical trap [Davie et al. Proc. SPIE 12649, 126490E (2023)]. In the present study we will explore the dynamics of mixed refractive index clusters counter propagating plane waves and in different types of optical trap. Optical forces are calculated using the discrete dipole approximation; dynamics are computed using Brownian dynamics, with hydrodynamic interactions in the low Reynolds number regime and particle separations are constrained using the SHAKE-HI algorithm.
We consider a system of colloidal particles, with two or more different refractive indices, which stick together to form mixed clusters. The behaviour of such clusters in optical traps will vary depending on the numbers of particles involved and the distribution of their refractive indices. Our own recent studies of heterodimers of such beads suggest there is a rich vein of novel behaviour to explore, including unusual dynamics and optical binding [O'Donnell et al. Proc. SPIE 12436, 124360J (2023)]. In the present computational study we will explore the dynamics of mixed refractive index clusters in different types of optical trap, as a function of number and composition of beads as well as their arrangement. In particular, we will highlighting the difference between symmetrical and asymmetrical arrangements of beads in conventional Gaussian beams as well as in OAM beams. The optics model used is based on the discrete dipole approximation and includes low Reynolds number hydrodynamics with bead separations maintained using SHAKE-HI constraints. Further studies will investigate optical binding between arrays of such clusters in different types of structured fields.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.