KEYWORDS: Image segmentation, Lung, Reconstruction algorithms, Wavefronts, Wave propagation, Image processing algorithms and systems, Computed tomography, In vivo imaging, Signal to noise ratio, Image analysis
Mouse models are becoming instrumental for the study of lung disease. Due to its resolution and low cost, high resolution Computed Tomography (micro-CT) is a very adequate technology to visualize the mouse lungs in-vivo. Automatic segmentation and measurement of airways in micro-CT images of the lungs can be useful as a preliminary step prior other image analysis quantification tasks, as well as for the study of pathologies that alter the airways structure. In this paper, we present an efficient segmentation and reconstruction algorithm which simultaneously segments and reconstructs the bronchial tree, while providing the length and mean radius of each airway segment. A locally adaptive intensity threshold is used to account for the low signal to noise ratio and strong artifacts present in micro-CT images. We validate our method by comparing it with manual segmentations of 10 different scans, obtaining an average true positive volume fraction of 85.52% with a false positive volume fraction of 5.04%.
Atlas-based segmentation has proven effective in multiple applications. Usually, several reference images are combined
to create a representative average atlas image. Alternatively, a number of independent atlas images can be used, from which multiple segmentations of the image of interest are derived and later combined. One of the major drawbacks of this approach is its large computational burden caused by the high number of required registrations. To address this problem, we introduce One Registration, Multiple Segmentations (ORMS), a procedure to obtain multiple segmentations with a single online registration. This can be achieved by pre-computing intermediate transformations from the initial atlas images to an average image. We show that, compared to the usual approach, our method reduces time considerably
with little or no loss in accuracy. On the other hand, optimum combination of these segmentations remains an unresolved problem. Different approaches have been adopted, but they are all far from the upper bound of any combination strategy. This is given by the
Combination Oracle, which classifies a voxel correctly if any individual segmentation coincides with the ground truth.
We present here a novel combination approach, based on weighting the different segmentations according to the mutual information between the test image and the atlas image after registration. We compare this method with other existing combination strategies using microscopic MR images of mouse brains, achieving statistically significant improvement in segmentation accuracy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.