In this paper, we investigate the use of random selection (RS) and random projection (RP) for hyperspectral image analysis, which are data-independent and computationally more efficient than other widely used dimensionality reduction methods. Both anomaly detection and target detection are considered. Due to the random nature, multiple runs of RS or RP are conducted followed by decision fusion to ensure a stable output. Parallel implementations using graphics processing unit (GPU) and clusters are also investigated. The experimental results demonstrated that both RS and RP are capable of providing better target detection performance after decision fusion, while the overall computing time can be greatly decreased with parallel implementations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.