An innovative constellation-shaped three-dimensional 14-quadrature amplitude modulation QAM (3D-14QAM) mapping scheme based on regular tetrahedron is proposed. The non-uniform 14QAM signals are designed by Huffman code and mapped onto the designed 3D constellation based on regular tetrahedron. The simulation demonstration is carried out successfully by VPI software in a 4 × 100 Gb / s wavelength division multiplexing (WDM) polarization division multiplexed coherent optical communication system with a transmission distance of 300 km. For WDM system, the simulation results show that the proposed scheme is capable of achieving about 1.8 dB OSNR gain over the traditional 3D-16QAM scheme at the hard-decision forward error correction (HD-FEC) limit of 3.8 × 10 − 3. In addition, the proposed 3D-14QAM can obtain 1.1 dB OSNR gain compared with the traditional 3D-16QAM for single-channel scenario at the HD-FEC. The outstanding performance indicates that the proposed scheme can provide a performance improvement for both single carrier system and WDM system. And benefited from the ability of suppress nonlinearity, the proposed scheme can obtain a larger gain in the WDM system than a single carrier system.
This paper introduces one three-dimensional measurement system which based on structured light. This system has the advantages of high precision, high speed, and simple structure. In the three-dimensional measurement system based on structured light, the solution phase is one of the key steps. Phase jump, shadow and other errors will have a great impact on the final point cloud computing. This paper explains the three-dimensional measurement system, then also made an error analysis and proposed a corresponding solution. The reasons for the phase jump were analyzed and the corresponding solutions were proposed. This paper also analyzes the cause of random error and proposes a solution. The final accuracy was improved. This has important applications in contour extraction in workpiece repair and autopilot.
In this paper, a lot of simulations has been done for ring-shaped active mode-locked lasers with quantum-dot semiconductor optical amplifier (QD-SOA). Based on the simulation model of QD-SOA, we discussed about the influence towards mode-locked waveform frequency and pulse caused by QD-SOA maximum mode peak gain, active layer loss coefficient, bias current, incident light pulse, fiber nonlinear coefficient. In the meantime, we also take the tunable performance of the laser into consideration. Results showed QD-SOA a better performance than original semiconductor optical amplifier (SOA) in recovery time, line width, and nonlinear coefficients, which makes it possible to output a locked-mode impulse that has a higher impulse power, narrower impulse width as well as the phase is more easily controlled. After a lot of simulations, this laser can realize a 20GHz better locked-mode output pulse after 200 loops, where the power is above 17.5mW, impulse width is less than 2.7ps, moreover, the tunable wavelength range is between 1540nm-1580nm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.