We investigated clinical imaging of the human retina with visible-light optical coherence tomography (vis-OCT) with a 1 µm axial resolution. Imaging was performed with rectangular modulation of the scanning beam that reduced image speckle noise and preserved fine anatomical features. B-scans acquired with scan modulation revealed new anatomical features and demonstrated increased contrast to noise ratio (CNR) over regularly acquired B-scans.
We present a technique to reduce speckle in visible-light optical coherence tomography (vis-OCT) that preserves fine structural details and is robust against sample motion. Specifically, we locally modulate B-scans orthogonally to their axis of acquisition. Such modulation enables acquisition of uncorrelated speckle patterns from similar anatomical locations, which can be averaged to reduce speckle. To verify the effectiveness of speckle reduction, we performed in-vivo retinal imaging using modulated raster and circular scans in both mice and humans. We compared speckle-reduced vis-OCT images with the images acquired with unmodulated B-scans from the same anatomical locations. We compared contrast-to-noise ratio (CNR) and equivalent number of looks (ENL) to quantify the image quality enhancement. Speckle-reduced images showed up to a 2.35-dB improvement in CNR and up to a 3.1-fold improvement in ENL with more discernable anatomical features using eight modulated A-line averages at a 25-kHz A-line rate.
Collagen degeneration is an important pathological feature of osteoarthritis. The purpose of this study is to investigate whether the polarization-sensitive optical coherence tomography (PSOCT)-based optical polarization tractography (OPT) can be useful in imaging collagen structural changes in human osteoarthritic cartilage samples. OPT eliminated the banding artifacts in conventional PSOCT by calculating the depth-resolved local birefringence and fiber orientation. A close comparison between OPT and PSOCT showed that OPT provided improved visualization and characterization of the zonal structure in human cartilage. Experimental results obtained in this study also underlined the importance of knowing the collagen fiber orientation in conventional polarized light microscopy assessment. In addition, parametric OPT imaging was achieved by quantifying the surface roughness, birefringence, and fiber dispersion in the superficial zone of the cartilage. These quantitative parametric images provided complementary information on the structural changes in cartilage, which can be useful for a comprehensive evaluation of collagen damage in osteoarthritic cartilage.
Collagen fiber orientation plays an important role in determining the structure and function of the articular cartilage. However, there is currently a lack of nondestructive means to image the fiber orientation from the cartilage surface. The purpose of this study is to investigate whether the newly developed optical polarization tractography (OPT) can image fiber structure in articular cartilage. OPT was applied to obtain the depth-dependent fiber orientation in fresh articular cartilage samples obtained from porcine phalanges. For comparison, we also obtained collagen fiber orientation in the superficial zone of the cartilage using the established split-line method. The direction of each split-line was quantified using image processing. The orientation measured in OPT agreed well with those obtained from the split-line method. The correlation analysis of a total of 112 split-lines showed a greater than 0.9 coefficient of determination (R2) between the split-line results and OPT measurements obtained between 40 and 108 μm in depth. In addition, the thickness of the superficial layer can also be assessed from the birefringence images obtained in OPT. These results support that OPT provides a nondestructive way to image the collagen fiber structure in articular cartilage. This technology may be valuable for both basic cartilage research and clinical orthopedic applications.
Fibrous tissues exist in many parts of the body, where the directional fiber organization is critical in maintaining their
normal functions. Disruption of the normal fibrous structure is often linked to tissue dysfunction. An imaging tool that
can reveal the detailed fiber architecture will be valuable for our understanding of the structure-function relationship in
these tissues. Here, we described a new high-resolution tractography method developed from Jones matrix polarizationsensitive
optical coherence tomography. We demonstrated its applications for visualization of fibrous structures in
several different animal tissues.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.