We present a compact-cavity, picosecond, mid-infrared optical parametric oscillator (OPO) employing a length of hollow-core-fiber (HCF) inside the cavity and operating at 1-MHz repetition rate for high pulse energy. Pumped by an ytterbium-doped fiber laser, the periodically-poled-lithium-niobate-based OPO generates output beam with tunable wavelengths ranging from 1.3 µm to 4.8 µm. The OPO provides 137-ps pulses with maximum energies of 10 µJ for signal output at 1.6 µm and 5 µJ for idler output at 3 µm, respectively. Output power performance with respect to the wavelength tunability and optimization of beam quality for the OPO are numerically and experimentally investigated.
Realizing compact picosecond Optical Parametric Oscillators (OPOs) capable of generating high-energy mid-IR pulses at MHz repetition rates is a challenge due to the correspondingly long cavity length requirements. Intracavity fiber delay lines can be used to increase the cavity length but the achievable peak powers are then severely constrained by fiber nonlinearity.
Here we report a compact, ytterbium-fiber-laser pumped, periodically poled lithium niobate based OPO that incorporates a 298 m length of hollow-core-fiber as an ultralow nonlinearity intracavity delay line. The OPO is capable of generating 1-MHz, 100-ps mid-IR pulses with an energy of 1.64-μJ and 12.8-kW peak power.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.