This paper presents results of the numerical modeling of a passively Q-switched intracavity harmonic generator as a source for laser micromachining. The model is based on the system of coupled rate equations for the active laser medium, passive Q-switching element, laser mode and mode of the generated harmonic. Main features of the system behavior (pulse shape and duration, repetition rate) were investigated numerically. Numerical investigations of the interaction of laser pulses generated by this system with metal target with focus on the laser pulse width dependence are presented.
We present a systematic study of the ultrafast laser micro-machining of glass using a Ti:Spp laser with moderate pulse energy (<5 μJ) at a high repetition rate (50 kHz). Optimal conditions were identified for high resolution surface laser etching, and via drilling. Several practical applications were developed: glass templates for micro fluid diffraction devices, phase gratings for excimer laser projection techniques, micro fluid vertical channel-connectors, etc. It is demonstrated that the interaction of ultrafast laser pulses with glass combines several different processes (direct ablation, explosive material ejection, and thermal material modification). A dynamic numerical model was developed for this process. It was successfully used for modelling of laser micro-machining with arbitrary 3D translations of the target.
We present a numerical model of the laser system for generating a special shape of the pulse: a steep peak at the beginning followed by a long pulse tail. Laser pulses of this nature are required for various applications (laser material processing, optical breakdown spectroscopy, etc.). The laser system consists of two "overlapped" cavities with different round-trip times. The laser crystal, the Q-switching element, the back mirror, and the output coupler are shared. A shorter pulse is generated in a short cavity. A small fraction of this pulse is injected into the long cavity as a seed. It triggers generation of the longer pulse. The output emission from this hybrid laser produces a required pulse shape. Parameters of the laser pulse (ratios of durations and energies of short- and long- pulse components) can be controlled through cavity length and the output coupler reflection. Modelling of the laser system is based on a set of coupled rate equations for dynamic variables of the system: the inverse population in an active laser media and photon densities in coupled cavities. Numerical experiments were provided with typical parameters of a Nd:YAG laser to study the system behaviour for different combinations of parameters.
We present a new computer numerical model of the phase-conjugate laser, utilizing an intra-cavity Stimulated Brillouin Scattering (SBS) element. The modelled laser system includes the active laser
crystal which is placed between the output coupler mirror and a stimulated Brillouin scattering cell.
The numerical model includes a set of rate equations for the active crystal inverse population, and for
the photon density inside the laser cavity. The SBS backscattering model is based on a reduced set of
coupled equations for electromagnetic fields for two waves (a pump wave and an SBS wave)
propagating in opposite directions. The numerical integration of the set of equations simulates in detail
the temporal dynamics of the laser. A wide range of realistic system parameters was numerically
investigated. Different laser regimes (from a quasi -CW mode to a Q-switched mode) were numerically
tested. The method of numerical modelling of such laser system can be efficiently used for an optimal
laser design.
We present a computer numerical model (virtual sub-nanosecond laser) utilizing intracavity stimulated Raman scattering. The goal of this work is to shorten laser output pulses (for which the highly nonlinear frequency conversion process stimulated Raman scattering is used) and to obtain high efficiency (which is enhanced by placing a Raman-active crystal inside the cavity where the fundamental laser frequency intensity is maximal). The following laser components were modeled: a diodepumped solidstate laser active medium (a crystal of the Nd3+:YLF type), a closed cavity for a wave on its fundamental frequency with a Q-switching element and an internal subcavity with a Ramanactive crystal with controlled output coupler transmission at the Raman frequency. The model components are: a numerical integrator of a set of three rate equations (for an inverse population of the laser medium and for the number of fundamental and Stokes frequency photons), random number sources for radiation seeding, and an interactive data input interface and graphic output. A wide range of parameters was investigated and output pulses as short as 0.8 ns were found. The optimal conditions for the maximal peak power of Stokes pulses were determined and the conditions for generating pulse trains for burst laser machining were identified.
For decades, precisely machining silicon has been critical for the success of the semiconductor industry. This has traditionally been done through wet chemical etching, but in the pursuit of integrating photonics devices on a single chip, other techniques are worth exploring. This quest opens up interest in finding a non-wet, non-contact, arbitrary-shape milling technique for silicon. In this paper, we present our latest work in the laser micromachining of silicon. A kilohertz-repetition-rate diode-pumped Nd:YLF laser (in infrared, green or ultraviolet modes) is focused on the surface of silicon wafers in a chlorine atmosphere for an enhanced magnitude and control of the etching rate. In the chlorine atmosphere, much less debris is deposited on the surface around the cut, sub-damage threshold machining is achieved for a better control of the etching depth, and etching rates ranging from 20-300,000 micron-cube/s have been measured. In particular, the use of an infrared laser beam is singled out, along with the advantages that it holds. Results of simulations highlight the particular characteristics of the various wavelength chosen for the machining.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.