The dynamics of two two-level atoms embedded near to the interface of paired metamaterial slabs, one of negative permeability and the other of negative permittivity are studied. The interface behaves as a plasmonic waveguide composed of surface-plasmon polariton modes. It is found that significantly different dynamics occur for the resonant and an off-resonant couplings of the plasma field to the atoms. In the case of the resonant coupling, the plasma field does not appear as a dissipative reservoir to the atoms. We adopt the image method and show that the dynamics of the two atoms are completely equivalent to those of a four-atom system. Moreover, two threshold coupling strengths exist, one corresponding to the strength of coupling of the plasma field to the symmetric and the other to the antisymmetric modes of the system. The thresholds distinguish between the non-Markovian and Markovian regimes of the evolutions. The solutions predict a large and long living entanglement mediated by the plasma field in both Markovian and non-Markovian regimes of the evolution. We also show that a simultaneous Markovian and non-Markovian regimes of the evolution may occur in which the memory effects exist over a finite evolution time. Keywords: met
In a recent experiment Shegai et al.1 have shown that a bimetallic particle dimer composed of gold and silver atoms may work as a directional frequency filter which scatters light of different frequencies in different directions. A phase difference between emitters required for the directional scattering of light was determined by the complex particle polarizabilities and therefore varies with the size, shape and material composition of the particles in accordance with their plasmon resonance characteristics. In this paper, we give a theoretical explanation of the experimental results in terms of interference between light fields emitted by nonidentical radiators.
We develop a theoretical framework to evaluate the energy spectrum, stationary states, and dielectric susceptibility of
two Jaynes-Cummings systems coupled together by the overlap of their respective longitudinal field modes, and we solve
and characterize the combined system for the case that the two atoms and two cavities share a single quantum of energy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.