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ABSTRACT   

With the continuous development of the brain-computer interface (BCI) technology, the lower limb rehabilitation system 
based on Motor Imagery (MI) has gradually become a research hotspot in the field of rehabilitation. To recognize the lower 
limbs MI, this paper designed an experimental paradigm for MI lower limb MI and used the 1D-CNN-LSTM deep learning 
algorithm to classify lower limb movement features from MI EEG signals. Compared with classical machine learning 
algorithms, the results showed that 1D-CNN-LSTM has relatively higher accuracy. Meanwhile, the paper built a real-time 
lower limb rehabilitation system based on the 1D-CNN-LSTM algorithm, which verifies the effectiveness and feasibility 

of the algorithm. The system provides an advanced and effective solution for brain-computer interfaces based on MI. 
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1. INTRODUCTION  

As China's aging population aggravates the problem, the number of elderly people who have difficulty walking is also 

increasing, and the demand related to old age continues to increase. It is shown that there are more than 2 million new 
cases of stroke hemiplegia in China every year, and 75% of these survivors face a series of sequelae, such as muscle 
weakness and paralysis. Meanwhile, limitation of lower limb motor function caused by stroke, spinal  cord injury, cerebral 
palsy and other diseases is also a common condition, which seriously affects the quality of patients ‘life [1]. Significant 
progress has been made in investigating motor imagery-based brain-computer interface (MI BCI) systems for rehabilitation 

functions [2][3], offering entirely new possibilities for rehabilitation therapy [4]. 

The increasing amount of research related to classification algorithms for MI in MI BCI systems. The feature extraction 
methods that are commonly used in (MI-BCI) system are Common Spatial Patterns(CSP)[5], Filter Bank Common Spatial 
Pattern(FBCSP)[6], Power Spectral Density(PSD)[7], Wavelet Packet Transform(WPT)[8] Energy Entropy[9], etc. 

Classification methods are Support Vector Machines (SVM)[10], Neural Networks (NN)[11], etc. 

Most of the MI research is geared toward categorizing left and right hand, not left and right leg. which is due to the fact 
that it is difficult to classify lower limb movements since the area of the cerebral cortex corresponding to lower limb 

movements is concentrated[12]. However, many people who lose the motor function of legs in the real life need to be 
rehabilitated or manipulate the equipment by MI-BCI. How to realize the high-precision classification of the lower limb 

will become a hotspot of further research. 

In summary, this paper introduced One-dimensional Convolutional Neural Network combined with Long Short-Term 
Memory Network (1D-CNN-LSTM) deep learning algorithm for lower limbs MI classification. At the same time, based 

on the above algorithms, a real-time lower limb rehabilitation system was designed.  

2. EXPERIMENT 

2.1 System framework  

During the experiment, subjects were given a task to simulate left and right leg flexion and extension movements through 
MI for a specified period. The MI experiment was written by the E-Prime software. Subjects performed an MI task of left-
leg flexion or right-leg flexion depending on the arrow direction display on the computer screen in a random order. The 
experiment was divided into seven blocks. Each block contained 20 trials of left-leg flexion and 20 trails of right-leg 
flexion. Each trial was divided into three steps, which is shown in Figure 1. 
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Figure 1. Experimental procedure for each trial in MI paradigm 

During 0s-1s, it was the resting phase; during 1s-2s, it was the task cue phase, with no MI task required. Subjects would 
prepare for the next MI task when they saw the cue "+". From 2s-7s, subjects performed the MI action corresponding to 
the arrows direction randomly displayed on the screen, which lasted for 5s. When the screen showed an arrow to the left, 

subjects were required to continuously image of the left leg flexion; when an arrow to the right was shown, subjects were 

required to continuously image of the right leg flexion. 

2.2 Data acquisition 

The experimental data was obtained from 12 subjects aged 20-25 years, including 8 males and 4 females. The dominant 
hand of all subjects was the right hand. Prior to the MI experiment, each subject completed training experiments at least 
five times in one week. During the experiments, the MI EEG signals was acquired in a quiet, soundproof, well-lit and well-

ventilated experimental room. Nine channels related to lower limb movement were collected, namely, F3, Fz, F4, C3, Cz, 
C4, P3, Pz and P4[13], where the channel placement is according to the 10-20 international standard, with a sampling rate 

of 1000 Hz. 

2.3 Data preprocessing 

Preprocessing was performed after obtaining the raw EEG signals. An averaging reference was used. Band-pass filtering 
from 0.5Hz-35Hz was performed. The sampling rate was reduced to 500Hz to improve computational efficiency. The data 

were divided into different events according to the MI task lasting for 5s and baseline correction was performed within 
each event. Artifacts such as electrooculogram were removed by Independent Component Analysis (ICA) to improve the 

signal-to-noise ratio of the EEG signals. Preprocessed data was used for the subsequent signal analysis. 

3. METHODS 

3.1 CNN 

Convolutional Neural Network (CNN) is a class of deep learning neural networks. The convolutional layer and pooling 

layer are the core components of CNN. By stacking and alternating of these two kinds of layers, CNN can effectively 

capture the layer-level features in the image. 

The weight sharing and translation invariance of the convolutional kernel enables them to learn similar features at different 
timestamps from the input signal. For multi-channel EEG signals, CNN can preserve the spatial topology among channels 
to better capture the relationship among channels. Therefore, CNN have better ability to extract EEG features, which has 

been widely used in MI classification. The unit structure of CNN is shown in Figure 2. 
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Figure 2. CNN unit structure diagram 
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3.2 LSTM 

LSTM (Long Short-Term Memory) is a variant of Recurrent Neural Network (RNN) that aims to solve the modeling 
problem of long-term dependencies in traditional RNNs [14]. LSTM uses a cell state to store and convey information. The 

cell state remains constant along the time step, allowing the model to add or remove information  selectively. 

Each LSTM unit consists of a memory cell, a forgetting gate, an input gate, and an output gate, which is shown in Figure 
3. These gates can retain, forget, or update information through the Sigmoid activation function and tanh layer, which is 
effectively solved the gradient vanishing problem, and enables LSTM to be able to effectively capture and utilize long-

term dependencies in time series. 
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Figure 3. Structure of the LSTM unit. 𝐶(.): internal core state; 𝐻(.): exposed state; 𝜎: Sigmoid function; 𝑋(.): input. 

3.3 1D-CNN-LSTM 

One-dimensional convolutional neural networks (1D-CNN) are a variant of CNN specifically designed to process one-
dimensional sequential data[15]. Unlike 2D-CNNs used in traditional image processing tasks, 1D-CNNs can efficiently 

extract the temporal features and capture the local patterns of EEG signals through the convolutional kernels. The 
traditional CNNs can capture spatial features but ignore the temporal relationships in EEG signals. LSTM can better deal 

with the temporal information, but is difficult to capture the spatial features.  

Therefore, combining 1D-CNN and LSTM could better adapt to analyze EEG signals at different frequency and temporal 
scales, improve the generalization of the model, enable the network to model EEG signals hierarchically, and improve the 
ability to learn complex features. It is a positive contribution to improve the classification accuracy and real-time 

performance of MI tasks. The data analysis process is based on the 1D-CNN-LSTM model, as is shown in Figure 4. In this 
combined model, one convolutional layer is reduced and LSTM is added to form the combined model. The 1D-CNN model 
focuses on the local feature extraction of time series data, and then the extracted features are passed to the LSTM model 

for long-term time series modeling. The model parameters are shown in Table 1. 

D
o

w
n

 s
am

p
li

n
g

F
il

te
ri

n
g

N
o

rm
al

iz
at

io
n

Pretreatment Deep learning models

1D-CNN-

LSTM

T
ra

in
in

g
 s

et

Cross validation Classification

V
al

id
at

io
n

 s
et

T
es

t 
se

t

M
o

d
el

 v
al

id
at

io
n

P
er

fo
rm

an
ce

 

ev
al

u
at

io
n

 

Figure 4. The data analysis process based on the 1D-CNN-LSTM model  
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Table 1. 1D-CNN-LSTM model parameters  

Layer Type Filter Kernel Stride Activation Function 

1 Input - - - - 

2 Convolution 256 5 1 ReLU 

3 Max pooling - 2 1 - 

4 Dropout - - Rate=0.3 - 

5 Convolutional 256 5 1 ReLU 

6 Max pooling - 2 1 - 

8 Dropout - - Rate=0.3 - 

9 LSTM 1 128 - - 

10 Dropout - - Rate=0.3 - 

11 LSTM 1 64 - - 

12 Dropout - - Rate=0.3 - 

13 Leveling - - - - 

14 Dense 128 - - ReLU 

15 Dropout - - Rate=0.3 - 

16 Dense 4 - - ReLU 

17 Incentive - - - softmax 

4. RESULTS 

After preprocessing, the EEG data was normalized by Z-Score normalization and Min-Max normalization. The collected 
data was divided into training, validation, and test sets in the ratio of 8:1:1, which was used to build 1D-CNN-LSTM 

model. 

4.1 Off-line analysis results 

The accuracy and loss rate curves during the training of the 1D-CNN-LSTM model introduced in this paper are shown in 
Figure 5. From Figure 5(a), the horizontal coordinate represents the number of iterations and the vertical coordinate  
represents the accuracy. The training accuracy of the model finally converges to 70% after 50 training iterations, and the 
validation set accuracy also converges to 70%. From Figure 5(b), the vertical coordinate denotes the loss rate, and the 

model loss rate converges to about 15%.  

  

Figure 5. Accuracy and loss rate graphs during training of 1D-CNN-LSTM model. (a) Model Accuracy; (b) Model Loss 
Ratio 

The classification accuracy of the collected EEG data through 1D-CNN-LSTM model for each subject is listed in Table 2, 

and the average classification accuracy was up to 63.75%. In comparison, we also used the traditional machine learning 
algorithm such as CSP-SVM and FBCSP-SVM, and the average accuracy reached 59.28% and 62.41%, respectively. It is 
suggested that the 1D-CNN-LSTM model has an advantage in the classification task of lower limb MI. Therefore, 1D-

CNN-LSTM model was applied to construct the real-time system.  
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Table 2. Classification accuracy of CSP-SVM, FBCSP-SVM and 1D-CNN-LSTM model 

Subject CSP-SVM 
FBCSP-

SVM 

1D-CNN-

LSTM 
Subject CSP-SVM 

FBCSP-

SVM 

1D-CNN-

LSTM 

S1 54.29% 57.50% 59.25% S7 63.21% 65.71% 67.14% 

S2 57.14% 60.36% 62.50% S8 57.86% 62.14% 62.86% 

S3 66.07% 70.36% 73.21% S9 64.64% 66.43% 67.50% 

S4 55.71% 58.21% 59.64% S10 49.64% 53.93% 55.00% 

S5 62.14% 65.00% 66.43% S11 63.57% 65.71% 66.07% 

S6 60.71% 63.93% 64.64% S12 56.43% 59.64% 60.71% 

    Mean 
± Std 

59.28% 
±0.24% 

62.41% 
±0.21% 

63.75% 
±0.23% 

 

4.2 Real-time system construction 

In this paper, a lower limb MI rehabilitation system based on 1D-CNN-LSTM model was built, and the system structure 
was shown in Figure 6. The real-time system used the NeuSenW EEG acquisition device for EEG signal acquisition. We 
chose the same nine channels mentioned in section 2.2. The EEG signals were stored and analyzed in real-time. We 
performed the training phase and real-time feedback phase. Table 3 presents the classification accuracy of the real-time 

system for 10 subjects. It shows an average classification accuracy of 56% for the left leg movement, 58% for the right leg 
movement, and with an overall average classification accuracy of 57%, which suggests that the classification of the real-

time system performs well. 
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Figure 6. The Real-time system structure 

 
Table 3. Left and Right leg Classification Accuracy of the Real-time System 

Accuracy 

Subject 
left right  Average  

Accuracy  

Subject 
left  right  Average  

S1 45% 50% 48% S6 65% 55% 60% 

S2 50% 55% 53% S7 55% 60% 58% 

S3 55% 60% 58% S8 50% 55% 53% 

S4 60% 60% 60% S9 65% 60% 63% 

S5 60% 65% 63% S10 55% 60% 58% 

    Mean  
± Std 

56% 
±0.43% 

58% 
±0.18% 

57% 
±0.21% 

5. CONCLUSIONS 

This paper studied ID-CNN-LSTM deep learning algorithms for lower limb MI EEG signals, and compared with the 

traditional machine learning algorithms. It is found that 1D-CNN-LSTM model has higher performance compared to CSP-
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SVM and FBCSP-SVM model in the respect of classification accuracy. We also used the adopted 1D-CNN-LSTM 
algorithm to build a lower limb rehabilitation real-time system based on MI EEG signals. The system realizes the use of 
MI EEG signals to control the left and right leg movements of a lower limb exoskeleton. The experimental results prove 
the feasibility of the real-time system. This system has potential rehabilitation applications, and provides an effective tool 

and methodology for theory and practice in the field of lower limb rehabilitation 
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