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Abstract. The explosion in the amount of information that is being processed is prompting the need for new
computing systems beyond existing electronic computers. Photonic computing is emerging as an attractive
alternative due to performing calculations at the speed of light, the change for massive parallelism, and also
extremely low energy consumption. We review the physical implementation of basic optical calculations,
such as differentiation and integration, using metamaterials, and introduce the realization of all-optical artificial
neural networks. We start with concise introductions of the mathematical principles behind such optical
computation methods and present the advantages, current problems that need to be overcome, and the
potential future directions in the field. We expect that our review will be useful for both novice and experienced
researchers in the field of all-optical computing platforms using metamaterials.

Keywords: photonic computing; all-optical calculation; optical neural network; programmable metasurface.

Received Oct. 18, 2022; revised manuscript received Nov. 19, 2022; accepted for publication Nov. 29, 2022; published online
Dec. 21, 2022.

© The Authors. Published by SPIE and CLP under a Creative Commons Attribution 4.0 International License. Distribution or
reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.

[DOI: 10.1117/1.AP.4.6.064002]

1 Introduction
Computers and digital processors that are used daily by a large
number of people in modern society are now an integral part of
life. They are generally made up of numerous transistors, resis-
tors, capacitors, and sensors that communicate through the flow
of electrons to perform calculations and store information using
bits that are represented by either a “0” or “1.” As the amount
of online digital content being created and consumed increases
continuously, the demands for data transfer, storage, and larger
bandwidths are simultaneously rising. However, the physical
size of transistors is reaching the angstrom scale, meaning that
further reduction in size will be limited by the size of atoms
themselves. Various new technologies have been proposed as
new ways to perform calculations with higher speed and effi-
ciency. Notably, quantum computing and photonic computing
are two of the major advancements that are being actively
researched.1 Both have their individual merits and obstacles
that must be overcome for application in real-life situations.

Quantum computing promises increased parallelism and there-
fore raw speed, but at the moment, must run at extremely low
temperatures that require a lot of power and specialized
equipment.2 Photonic computing, on the other hand, aims to re-
place electronic systems with their photonic equivalent to simul-
taneously increase the speed and efficiency of data processing3

and decrease the amount of data corruption that can occur in
electronics due to the lack of interference of photons compared
to electrons but is somewhat hindered by the requirements of
wavelength scale building blocks, which are tens to hundreds
of times larger than the latest electronics architectures that use
a 3-nm die.4 As both of these technologies are in their infancy,
there is still a long way for them to mature before being com-
mercially viable, by which time, they could potentially be com-
plementary, rather than competing, technologies.

Research into photonic devices for all-optical computations
has been fruitful over the past few decades.5–12 All-optical analog
computing opens the door for large real-time parallel computa-
tions with minimal energy requirements, which in the energy-
conscious reality that we live in with such massive reliance
on big data calculations, practical realizations of low-energy
real-time image, and data processing could be fundamental to
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unlocking the next generation of all-optical, or optoelectronic
devices. Rather than using the standard “0” and “1” bits used
for digital calculations and postprocessing of data, electro-
magnetic (EM) fields can be exploited to perform calculations
and operations optically at the speed of light. Such analog
processing can exploit all of the optical properties of light simul-
taneously, including the phase, amplitude, and polarization to
manipulate the complex amplitude of EM waves. This could
facilitate both high-throughput and low-power devices, all inside
a miniaturized footprint, compared to that of traditional bulky
optics made up of lenses and other components. Silva et al.13

proposed the concept of using metamaterials for spatial differ-
entiation, integration, or convolution, with simulations based
on metasurfaces combined with graded-index waveguides, as
well as multilayered slabs designed to achieve specific Green’s
functions. Since then, there have been numerous experimental
demonstrations of optical calculations using metamaterials in
various wavelength regimes. Along with the development of
high-fidelity and large-scale nanofabrication techniques that
have been produced over the past decade, the opportunity to cre-
ate fully on-chip photonic devices with extremely miniaturized
footprints appears to have come to light. Fully optical computing
and image processing could have impacts on numerous fields,
including on-chip solid-state light detection and ranging
(LiDAR),14,15 bioimaging,16 and preprocessing of big data.17

Here we will review the recent advancements of all-optical
photonic calculations using metamaterials, including simple
single-layered structures, multilayer structures, structured flat
optical elements, known as metasurfaces, and other photonic
devices, such as photonic crystals. We note here that although
photonic crystals are not exactly classified as metamaterials,
they are still photonic devices that demonstrate interesting char-
acteristics at the wavelength scale, which become nanophotonic
devices for visible light. We will start by introducing the basic
mathematical functions that underpin the speed-of-light calcu-
lations. We will then introduce the latest research on meta-
materials for linear differentiation, integration, and Laplacian
calculations and discuss their potential applications in terms
of all-optical computing. We will conclude by discussing the
current progress in all-optical machine learning, from the math-
ematical basis of how it works, to the latest research, and current
difficulties. We will finally provide our thoughts on the outlook
and future of all-optical computing toward fully integrated pho-
tonic brains. We hope that this review will be useful for both
experts and novices in the field of all-optical computations using
metamaterials and to serve as a valuable reference to guide new
research.

2 All-Optical Calculations at the Speed
of Light

2.1 Mathematical Operations

We start by describing how light can be used to perform math-
ematical operations. An interesting mathematical parallel exists
between convolution in Fourier space between the input func-
tion and the systems impulse response, and the interaction of a
single-wavelength EMwave interacting with an optical element.
That is, for a system with an impulse response given by gðx; yÞ,
any input function given by fðx; yÞ produces an output of
wðx; yÞ that can be defined by

wðx; yÞ ¼
Z

gðx − x0; y − y0Þfðx0; y0Þdx0 dy0; (1)

which can be written in terms of Fourier transforms (FTs) as

wðx; yÞ ¼ IFTfGðkx; kyÞFTffðx; yÞgg; (2)

where IFT denotes an inverse Fourier transform, and
Gðkx; kyÞ ¼ FTfgðx; yÞg, where kx and ky are the spatial fre-
quency variables and x and y are real-space locations. This is
analogous to an input EM wave given by Einðx; yÞ that interacts
with a metamaterial imparting a spatially varying function
mðx; yÞ that performs some form of optical operation in Fourier
space. The resultant EM field, Eoutðx; yÞ can be defined as

Eoutðx; yÞ ¼ IFTfmðx; yÞFTfEinðx; yÞgg: (3)

It is therefore clear to see that the phase and amplitude that
are encoded by the metamaterial represent the term Gðkx; kyÞ in
Eq. (2). It should be noted that, although it does not cause any
additional difficulties, based on the well-known identity
FTfFTfAðx; yÞgg ∝ Að−x;−yÞ, the output EM field will be
flipped, i.e., it will represent Eoutð−x;−yÞ. This FT is generally
performed using standard refractive lenses but has also been
successfully encoded directly into a metamaterial itself to
further miniaturize the system. This switching between real and
Fourier space can also be avoided by designing metamaterials
that directly process the required transfer function in the Fourier
space. This is generally achieved by designing a metamaterial
with an angular-dependent response and has been termed as the
Green’s function approach.

Differentiation is one of the fundamental mathematical
operations that appears in numerous places in physics, from
Newton’s famous second law of motion, to Maxwell’s equations
that underpin classical electromagnetism. When applied to an
image, a process of edge detection is performed, which could
have potential impact in numerous fields that benefit from in-
stantaneous edge detection without the need for computationally
expensive and time-costly postprocessing, such as in object and
scene detection or biomicroscopy. Machine-learning algorithms
also rely on such numerical calculations, such as differentiation
and backpropagation, further highlighting the potential for
all-optical computing at the speed of light. First, without loss of
generality, we consider one-dimensional (1D) operations and
use the notation of m to represent the optical coefficient of
the metamaterial, which could be interchanged freely with the
reflection or transmission coefficient, r and t, respectively, de-
pending on the metamaterial design and direction of operation.

2.1.1 First-order differentiation

In order to perform first-order spatial differentiation in 1D, for
an arbitrary function fðxÞ, the operation ∂fðxÞ∕∂x is equal to
ikx in Fourier space. Therefore, the metamaterial ½mðxÞ� should
physically impart the transfer function:

mðkxÞ ¼
maxðjmjÞikx

L
; (4)

where 2L is the size of the metamaterial bounding the spatial
locations −L ≤ x ≤ L. This function is depicted in Fig. 1(a).
The maximum reflection or transmission that can be achieved
imparts a limitation that is related to the fact that the operations
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performed by the metamaterials are in fact scaled when compared
to the exact mathematical definition. The phase of the transfer
function required for first-order differentiation is odd with respect
to kx, which necessarily requires some form of mirror symmetry
to be broken with respect to the x axis as well as the z axis.18 This
also holds true for other odd integer orders of differentiation.
In terms of optical image processing, the first-order differential
will produce an edge-enhanced image. Since the first derivative is
dependent only on the neighboring intensities, it can be quite
sensitive to fluctuations and noise in the image.

2.1.2 Second-order differentiation

Considering an arbitrary function fðxÞ, second-order spatial dif-
ferentiation in 1D, i.e., ∂

2fðxÞ
∂x2 , can be represented in Fourier space

as −k2x. This means that designing a metamaterial that imparts
a parabolic transfer function and a near-constant phase profile
to the incoming EM wave allows access to completely optical
second-order differentiation, i.e., the following function should
be achieved:

mðkxÞ ¼
maxðjmjÞk2x

L
; (5)

where the coefficient is the same as Eq. (4). This function is
depicted visually in Fig. 1(b). Since kx ¼ k sin θ, the transmis-
sion or reflection should be zero at normal incidence, while
increasing quadratically under increasing angle of incidence.
Second-order differentiation is generally less prone to noise
in images but can, however, struggle when there are large local
fluctuations in intensity.

2.1.3 Integration

To perform 1D integration on an arbitrary function fðxÞ, the
operation defined by ðikxÞ−1 must be achieved. It should be
noted that the singularity at kx ¼ 0 should be taken care of ap-
propriately when designing the metamaterial.13 This has been
achieved through the use of a constant value around the singu-
larity. This function is depicted in Fig. 1(c). In all-optical image
processing, the integral of an image has implications in real-time

face detection, where high-resolution images can be processed
quickly to uncover and highlight important features.19

Although we introduced 1D operation for simplicity, two-
dimensional (2D) operations can be easily achieved by simply
including the second dimension. The Laplacian is a specific
example of a well-known 2D operation that can be implemented
by manipulating EM waves.

2.1.4 Laplacian

The Laplacian (∇2) is the 2D version of the second-order
differentiation operation discussed above. Therefore, for a
function fðx; yÞ, the 2D second-order differentiation is given

as ∂2fðxÞ
∂x2 þ ∂2fðyÞ

∂y2 . Subsequently, given an arbitrary EM field

Eðx; yÞ, ∇2Eðx; yÞ ¼ −k2∥Eðx; yÞ, where k2∥ ¼ k2x þ k2y. This re-
sults in an additional requirement that the metamaterial should
be symmetrical in both the x and y directions. Such even oper-
ations are fairly simple to achieve physically; however, for odd
functions extra steps must be undertaken to create a physical
asymmetry. Various solutions have been proposed and devel-
oped, which we will review in terms of all-optical mathematical
operations with different designs of metamaterials and photonic
devices in the following section.

2.2 Metamaterials for All-Optical Calculations

2.2.1 Static metamaterials

Single and multilayers. The simplest way of manipulating EM
waves is by passing them through the interface between two
media. Since layering materials does not require any form of
patterning or complex procedures other than deposition, they
provide an obvious and straightforward method of manipulating
EM waves through the correct design of the wavelength, inci-
dent angle, and thicknesses. Fabry–Perot (FP) resonators have
found wide use in metamaterials for various applications from
selective absorbers20,21 and radiative cooling,22 to structural
color, with multilayer structures such as distributed Bragg
reflectors being extensively researched. They have also been
utilized for all-optical computing through various mechanisms,
which will be presented here.

Fig. 1 Required optical transfer functions for all-optical calculations for (a) first- and (b) second-
order differentiation and (c) integration. The black lines represent the required transmission or
reflection coefficients, whereas the red dashed lines denote the required phase. Note the π phase
shift required at kx∕k0 for the first-order differentiation, due to its being an odd function. The
absolute value of the phase is arbitrary. The limits of the x axis are determined by the angular
response of the designed metamaterial, which denotes the working NA of the system. Note
the arbitrary truncated region around 0 for the integration operation that is necessary to avoid
unphysical gain requirements, as suggested in Ref. 13.
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In one of the first examples of optical computing using meta-
materials, Zhu et al.23 utilized surface plasmon polaritons (SPPs)
to demonstrate first-order differentiation using a simple single
layer of silver on a glass prism [Figs. 2(a)–2(c)]. The total re-
flected amplitude was determined by the interference between
the reflection from the glass–metal interface and the SPP radi-
ation under the illumination of 532 nm incident light. The thick-
ness of the film was only around 50 nm, providing a tiny
footprint for the device that has the potential to be produced
at scale. The minimum resolution of edge detection was deter-
mined to be around 7.2 μm, which could be sufficient for image-
processing applications. However, the device operates in quite a
narrow spatial region with limited efficiency due to the require-
ment of exciting the SPP, which in turn, also restricts the design
to work in reflection. The requirement of the use of a bulky

prism, also somewhat offsets the benefit of the reduction of
size of the super-thin film. By adding a few extra layers, rather
than the extremely simple single layer reported previously,
Wesemann et al.24 experimentally showed the use of a near-
perfect absorbing mirror for all-optical image processing of
phase and amplitude objects with a Salisbury screen with a two-
layer design [Figs. 2(d)–2(f)]. The metal–insulator–metal layers
made up of gold (Au) and silicon dioxide (SiO2) provide an FP
response, so by making the dielectric insulator layer thickness
approximately a quarter wavelength, perfect absorption is re-
leased at the working wavelength. Since this absorption is
dependent on the incident angle of light (θ), the reflectance
is therefore also related, since the transverse component kx ¼
k sin θ, where k is the wave vector of light in free space.
The successful demonstration of phase imaging of a biological

Fig. 2 All-optical calculations using planar films. (a) Experimentally measured (green dots) and
numerically fitted (solid lines) spatial transfer functions for three different samples. θ0 corresponds
to the incident angle required for the phase matching to support the SPP. All optical first-order
differentiation of (b) (i) amplitude and (c) (i) phase images. (ii) The reflected intensity after differ-
entiation. Scale bars, 100 μm. (d) Calculated reflectance for p-polarization (solid line) and
s-polarization (dashed line) at the absorption wavelength of 631 nm. (e) Demonstration of edge
enhancement in reflected amplitude images. (i) Bright-field microscope image of the amplitude
object and experimentally reflected image from the thin film mirror at (ii) 598 nm, (iii) 640 nm,
and (iv) 694 nm. Scale bar, 100 μm. (f) Experimental demonstration of phase imaging of a biological
sample. Images reflected from the mirror at (i) 598 nm (ii), 638 nm, and (iii) 694 nm. Scale bar,
250 μm. First-order differentiation using the SHE of light. (g) Experimental (dots), theoretical
(dashed lines), and the ideal (solid lines) spatial spectral transfer functions for first-order differen-
tiation. (h) Experimental demonstration of the material and angle independence of SPE of light
for image differentiation; (i) air to glass interface with the Chinese character for “light” and (ii)
air to Au and glass interface with the English word “LIGHT.” Images (a)–(c) reproduced with per-
mission from Ref. 23. Copyright 2017 Springer Nature Group. Images (d)–(f) reproduced with per-
mission from Ref. 24. Copyright 2019 AIP Publishing LLC. Images (h)–(j) reproduced with
permission from Ref. 25. Copyright 2019 American Physical Society.
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sample using the designed device highlights the potential for
such simple systems, without any requirements for complex
and time-consuming structuring processes, to achieve all-optical
computation.

Noting the fact that most multilayered structures can only
operate for even functions, such as second-order differentiation,
due to their inherent symmetry, Youssefi et al.26 provided a
solution to achieve odd functions, specifically first-order differ-
entiation. This was achieved by simply rotating the device, or
equivalently, using light at an oblique incidence. Since the re-
flection coefficient of TM-polarized light becomes zero at the
Brewster angle, odd functions can be subsequently released;
however, they are limited to 1D operation. However, Xu et al.27

later provided a solution for 2D differentiation using the proper-
ties of the Brewster angle. 2D edge detection was also demon-
strated by Zhu et al.28. They identified that the complex transfer
function should carry a topological charge (TC) in order to
exhibit broadband isotropic 2D differentiation. By selecting the
appropriate input and output polarization and using the incident
angles that correspond to total internal reflection or the Brewster
angle, 2D differentiation was successfully proven for both green
and red light with wavelengths of 532 and 633 nm.

In addition to exploiting the Brewster angle, Zhu et al.25

showed that since the reflected light from a planar interface ex-
hibits a different transverse shift based on its polarization state,
the spin Hall effect (SHE) of light can be utilized for spatial
differentiation of EM waves [Figs. 2(g)–2(j)]. They showed that
by using specific orthogonal polarization states under the para-
xial approximation, the reflected and refracted light from any
planar interface, regardless of the material or incident angle,
can be employed, since the differentiation operation is due to
the intrinsic nature of the SHE.29 Since SHE is a nonresonant
effect, the spatial differentiation frequency bandwidth is infi-
nitely large, which enables ultrafast all-optical calculations at
all wavelengths. Accordingly, 1D differentiation was experi-
mentally demonstrated at a wavelength of 532 nm, both for vari-
ous angles and an air–glass and an air–Au–glass interface,
proving the generality of using SHE for differentiation. One
drawback of SHE is that it disappears at normal incidence,
which means that the signal is decreased at extremely small
incident angles. However, recently, SHE has been proven for
arbitrarily polarized and unpolarized light,30 as well as high-
efficiency operation,31 which could open the path for further
developments of SHE for all-optical calculations. Another
interesting application of spatial differentiation using SHE was
demonstrated as a method to calibrate spatial light modulators
(SLMs) by converting phase information into amplitude infor-
mation that can be imaged directly.32 In turn, this concept was
extended to develop a phase-mining method by measuring a
shadow-cast effect in the measured images.33 2D differentiation
has also been proposed using SHE near the Brewster angle
due to a double-peak profile.34 A common drawback of the
work presented so far is that they operate in reflection mode,
whereas for practical applications, transmission mode would be
preferred.

This was successfully proposed and demonstrated by Xue
and Miller,35 who also noted that the conventional Laplacian-
based transmission response may be not the ideal case when
considering the scattering physics of real-world designs.
Therefore, through the optimization of alternating layers of
silicon (Si) and SiO2, 2D second-order differentiation was dem-
onstrated with a high numerical aperture (NA), along with the

benefits of straightforward fabrication of simple multilayers.
Transmission up to angles of 80 deg was designed, which cor-
responds to an NA of 0.98. Since any transmission function can
be optimized by changing the target, various operations were
designed. In particular, for the functionality of edge detection,
the authors suggest that since a multilayer design with a trans-
mission ðθÞ ≈ θ3 dependency is more closely designed than the
standard quadratic form, suggesting that a more data-driven
approach could be taken to optimize the output fields rather
than designing the optical response of the metamaterial directly.
Other multilayer dielectric slabs have also been proven for in-
tegration calculations.36

Plasmonic structures. Pors et al.37 demonstrated plasmonic
metasurfaces for analog computing by exciting gap-surface
plasmons (GSPs) through the design of an Au meta-atom on
top of a SiO2 spacer, above an Au mirror [Figs. 3(a)–3(c)]. The
GSPs propagate within the SiO2 spacer, demonstrating FP-like
resonances that originate from the multiple reflections due to
the meta-atoms. Both first-order differentiation and integration
were demonstrated numerically and experimentally. The meta-
surfaces operate in reflection mode at the wavelength of 800 nm,
providing all-optical mathematical operations at visible wave-
lengths. The fundamental design of using the GSP allows for
the full phase and amplitude control of incident light; however,
it must be used in reflection, which somewhat limits its potential
uses for integration in optical systems that generally require
transmission-type components. Hwang et al.38 subsequently
numerically presented a transmission mode plasmonic metasur-
face based on localized surface plasmon resonances driven by
evanescent coupling of five metallic meta-atoms [Fig. 3(d)].
Simulations of second-order differentiation of phase were
demonstrated; however, gaps of around 10 nm could limit the
feasibility of fabrication of such devices. Various double split
ring resonator (SRR) devices have been developed to perform
second-order differentiation in the microwave regime.40 Recently,
a double SRR fabricated on either side of a dielectric substrate
was demonstrated by Wang et al.39 to perform a number of
all-optical operations [Figs. 3(e)–3(f)]. Namely, first-order
differentiation and cross-correlation are experimentally proven
using the Huygens’ metasurface at microwave frequencies.
A Huygens’ metasurface is so-called because each meta-atom
being considered as the source of a secondary wave is emitted
from the specific spatial location. This means that each spatial
location has a defined response due to the designed meta-atom,
without considering any long-distance effects from neighboring
meta-atoms. Twenty-five distinct meta-atoms were designed in
order to encode the required complex amplitude into the meta-
surface, which acts as the transfer function to modulate the
Fourier spectrum directly. This was achieved by superimposing
a phase factor related to the input and output focal length of
the system, which removes the requirement of the 4f system,
reducing it down to a 2f one. The single-layer metasurface is
extremely small, down to a thickness of around λ∕6, which
means that the entire system is effectively miniaturized.

Rather than using SRRs as the meta-atoms for Huygens’
metasurfaces, their long-distance interactions can also be ex-
ploited in what is known as a nonlocal metasurface. As one
of the first nonlocal metasurfaces for all-optical computations,
Kwon et al.18 implemented the concept of nonlocal metasurfaces
to demonstrate first- and second-order differentiation and inte-
gration at normal incidence. A sinusoidal modulation of the
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permittivity of the dielectric element in the SRR meta-atoms is
imparted along the x axis to provide a larger variation in the
nonlocal response by engineering the magnetic resonance.
This gives rise to momentum matching to leaky guided modes,
known as quasi-guided mode resonances (qGMRs), which
propagate along the surface. By aligning the operating fre-
quency with the location where the transmission of the meta-
atom response due to the leaky qGMR is zero, a strong variation
in the response with regard to the incident angle, and therefore
the incoming wave vectors, is produced. The maximum spatial
resolution of the designed metasurface is determined by the
angle of where the transmission becomes unity, which is
dependent on the dispersion of the leaky GMR. To provide
the asymmetry for first-order differentiation, an array of metallic
wires was placed under the metasurface parallel to the x axis.
Furthermore, 2D second-order differentiation was demonstrated
by simply rotating two 1D operation metasurfaces by 90 deg.

Although the ideal Laplacian operator defined by d2

dx2 þ d2

dy2 re-
quires azimuthal symmetry, using unpolarized light to illumi-
nate the image provides successful 2D edge detection using the
simplified design.

Despite these successful demonstrations of all-optical calcula-
tions using plasmonic metamaterials, designing and fabricating
nanoscale meta-atoms that can control the complex amplitude
of light at visible wavelengths is still a challenge. Although
plasmonics has shown the potential of all-optical computations,
they are generally limited at visible wavelengths due to ohmic
losses and rely on exciting strong plasmonic resonances within
small gaps. Therefore, all-dielectric metamaterials have been
proposed as an alternative direction with numerous successful
advances in the past decade.

All-dielectric structures. Nanophotonic devices based on di-
electrics have been the subject of copious research in recent

Fig. 3 Plasmonic-based metamaterials for all-optical calculations. (a) (i) Reflection coefficient and
(ii) meta-atom dimensions for 50 μm wide plasmonic differentiator and integrator metasurfaces.
(d ¼ 2.5 μm). (b) Bright-field images and measured (solid lines) average normalized reflectivity
along the x coordinate, along with the ideal (dashed lines) reflectivity of the (i) differentiator
and (ii) integrator plasmonic metasurfaces. (c) (i) Input object with varied phase and amplitude
and (ii) reflected image after integration by the plasmonic metasurface, along with the measured
(solid lines) and ideal (dashed lines) normalized intensity along the x direction. (d) Scattered inten-
sities of the plasmonic circuits for first- and second-order differentiations as functions of incidence
angle θ for a plane wave polarized along themeta-atoms. The inset indicates the oblique incidence
for the second-order differentiation circuit. (e) Simulated transmission amplitude and phase of the
25 designed meta-atoms at 10 GHz. (f) Schematics, numerical simulations, and experimental
results of the normalized electric field intensity distribution at the focal length of 100mm and work-
ing frequency of 10 GHz for (i) 1D-edge detection along the x axis, (ii) 2D-edge detection, and
(iii) 2D-edge detection of a regular hexagon. Images (a)–(c) reproduced with permission from
Ref. 37. Copyright 2015 American Chemical Society. Image (d) reproduced with permission
Ref. 38. Copyright 2018 Optica Publishing Group. Images (e) and (f) reproduced with permission
from Ref. 39. Copyright 2022 Springer Nature Group.

Badloe, Lee, and Rho: Computation at the speed of light: metamaterials for all-optical calculations and neural networks

Advanced Photonics 064002-6 Nov∕Dec 2022 • Vol. 4(6)



years. In one early demonstration of all-optical computational
dielectric metasurfaces by Zhou et al.,41 a 1D phase gradient
was patterned into a glass substrate using a femtosecond pulse
laser to create a grating structure. Under illumination of linearly
polarized light with the metasurface placed in the Fourier plane
of a lens, 1D edge detection was successfully proven. The re-
quirement to place the metasurface in the Fourier plane is due to
its acting as a filter in the Fourier regime, rather than directly
processing the information, as the layered structures in the pre-
vious section demonstrated. The interplay between the slight
difference in the transmitted LCP and RCP light provides the
final image with a horizontal variation in images that, when an
analyzer is used, produces edge detection with high efficiency of
over around 90%. A similar idea was used to prove the ability of
a two-layer photonic crystal slab structure to perform first- and
second-order differentiation using incoherent light.42 By per-
turbing the location of the layers, mirror symmetry can be bro-
ken in order to achieve first-order differentiation. This concept
has been further demonstrated for 1D, 2D, and even 3D edge
detection using an array of metalenses.43 Through postprocess-
ing, the variation of the spatial location of each individual metal-
ens allows for the calculation of 3D edge detection. However,
as we hope to move toward fully optical calculations, methods
that require no postprocessing would be more desirable.

To that note, Cordaro et al.44 demonstrated all-dielectric
metasurfaces that perform 1D first or second differentiation
by engineering a 1D grating of Si nanobeams. The spatial
dispersion of the metasurfaces is controlled using the nonlocal
response due to the qGMR, which allows for direct processing
of the angular information without the need for a 4f system.
A Fano-type spectrum is generated by combining the FP reso-
nance from the thickness and filling factor of the nanostructures
with the qGMR, which occurs when the in-plane k-vectors of
the incoming light match that of the nanoscale grating. This
design demonstrated an operational NA of 0.35 and experimen-
tally measured transmission of over 0.8, allowing for processing
of high-resolution images at the speed of light. This was suc-
cessfully experimentally proven for both simple images of text,
and a more complex painting. Various other examples and de-
signs of gratings that exploit the qGMR in a 1D grating structure
have been proven for 1D differentiation.45 For practical applica-
tions, however, 2D calculations are in demand.

To tackle this issue, Zhou et al.46 demonstrated flat optics for
image differentiation using Si meta-atoms embedded in PMMA
on a glass substrate to develop a photonic crystal that can per-
form 2D second-order differentiation [Figs. 4(a)–4(c)]. An NA
up to 0.315 is experimentally demonstrated to produce a reso-
lution of around a micrometer. Moreover, the realistic applica-
tion of such metasurfaces was proven by integrating them
directly into an optical microscope and camera sensor, high-
lighting the potential for such miniaturization of optical compo-
nents. The photonic crystal slab supports leaky qGMR modes
that can lead to near-unity backreflection or transmission when
Kerker’s conditions are met. Bound states in the continuum
(BIC) were uncovered, and the working wavelength was chosen
to be 1120 nm to avoid it. At oblique incidence, there is no
s-polarized output due to reciprocity; however, under p-polarized
incidence, the required quadratic response for the transfer func-
tion is satisfied. Furthermore, after redesigning the metasurface to
work at 740 and 1450 nm, metasurfaces were inserted into a com-
mercial optical microscope and above an image sensor to directly
perform 2D edge detection on various biosamples. Additionally,

the possibility for further miniaturization was demonstrated
using a metalens for the focusing element and spatially layering
the differentiation metasurface and metalens on top of each
other, highlighting the potential that all-dielectric optical com-
puting holds for integration into existing systems. In another
example, Guo et al.49 implemented a dielectric photonic crystal
slab above a dielectric layer with an air gap to create an unusual
band structure that is isotropic for the two orthogonal polariza-
tions in transmission mode. Another obvious solution to further
miniaturize 2D all-optical calculations is to use metasurfaces
with 2D arrays of meta-atoms. By combining the whole 4f
system with flat lenses such as gradient index lenses, or metal-
enses before and after the computing metasurface, the system
can be easily miniaturized to perform all-optical calcula-
tions.50–53 Alternatively, the opposite can also be implemented
to achieve similar responses, i.e., air holes in a dielectric layer.
Kwon et al.54 employed a triangular lattice of holes in a Si mem-
brane to 2D second-order differentiation with an NA of 0.1392.
Since the metasurface is designed to be polarization-indepen-
dent, it can also be used to perform edge detection using unpo-
larized light. In order to achieve first-order differentiation, a
SiO2 layer was added to break the symmetry in the z direction,
while in-plane symmetry was broken by adding three holes
around the main hole. In another example, Long et al.55 designed
a photonic crystal slab made of daisy-shaped holes in a hexago-
nal lattice shape for polarization-independent functionality. At
two different frequencies, the device acts as a free-space com-
pressor or a second-order differentiator.

Other resonant effects have also been effectively exploited
for optical computation. Komar et al.47 explored the effect of
the electric and magnetic Mie-type resonances to demonstrate
that the magnetic resonance provides a better mechanism for
second-order differentiation [Figs. 4(d)–4(e)]. The hexagonal
lattice of Si meta-atoms provided a magnetic resonance at
the working wavelengths of 1400 and 1570 nm for the magnetic
and electric dipole resonances, respectively, and demonstrated
polarization-insensitive 2D edge detection. The intensity of
the edge detection is fairly low, which is expected as the high-
power harmonics are cut during the edge detection process.
BICs are nonradiating resonant modes that exist in open systems
that cannot outcouple to radiating channels that propagate out of
the system.56,57 Optical BICs have been a hot topic recently, with
deep research into symmetry-protected BICs, accidental BICs,
and quasi-BICs,58–60 the latter of which exist close to the BIC
resonances and can therefore be accessed for experimental dem-
onstration. Quasi-BICs also rely on long-distance interactions
between meta-atoms that result in nonlocal responses. In order
to exploit the quasi-BIC resonance, Pan et al.61 designed a modi-
fied square meta-atom with a square notch on each face made of
Si in a square lattice. The symmetry of the lattice and meta-atom
ensures the isotropic transfer function that is required for 2D
second-order differentiation. By calculating the dispersion band
structure of the metasurface, the existence of an infinite quality
factor (q-factor) resonance was proven. Therefore, normally
incident plane waves on the metasurface cannot access the BIC;
however, the finite q-factors of the quasi-BIC can be accessed at
different incident angles for p-polarized light. The designed
metasurface demonstrated the desired isotropic parabolic shape
up to angles of around 8 deg, which indicates an NA of about
0.14 at the working wavelength of 740 nm. Exploiting the
quasi-BIC mode for optical calculations leads to extremely
high-quality results, as the q-factor of the resonance can be
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Fig. 4 All-dielectric metamaterials for all-optical calculations. (a) Calculated optical transfer func-
tion for p-polarization at 1120 nm (red and green lines) and quadratic fitting (blue dashed line).
(b) (i) Optical image of the 3D macroscopic imaging target of a plastic flower and its bright-field
and differentiated imaging results. (ii) The same with a second target. (c) Imaging results for
(i) bright-field and (ii) differentiated onion cells. Scale bars: 50 μm. (iii) Optical image of the com-
pound metalens and differentiator system. (d) Simulated angular dispersion of the metasurface at
different incident angles at the wavelength of 1400 nm, corresponding to the magnetic resonance
mode. (e) Edge detection using the magnetic dipole mode at 1400 nm for horizontal and vertical
stripes. (f) (i) Calculated (lines) and experimental (dots) amplitude of the meta-atoms and (ii) phase
determined by the rotation angle of the meta-atoms. (g) (i) Amplitude object and (ii) differentiated
images. Scale bars: 50 μm. (h) (i) The transmitted and (iii) differentiated images of a phase object.
Scale bars: 50 μm. Images (a)–(c) reproduced with permission from Ref. 46. Copyright 2020
Springer Nature Group. Images (d) and (e) reproduced with permission from Ref. 47. Copyright
2021 American Chemical Society. Images (f)–(h) reproduced with permission from Ref. 48.
Copyright 2022 Springer Nature Group.
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theoretically infinite. However, this comes with additional
difficulties in terms of fabrication, especially at visible wave-
lengths. The robustness of fabricated devices that demonstrate
BICs has been actively studied, proving the potential that such
high-q resonances could bring.62

Furthermore, Goh et al.63 proved that any arbitrary shaped
scatterer can be exploited by designing a meta-atom with an op-
timized nonlocal response using inverse design. The problem is
defined as a partial differential equation, and the inexact Newton
conjugate gradient method is used to find an optimum solution
to the number of harmonics for the problem. The scatterer is
designed using Si with a working frequency of 135 THz. Since
the response of the designed scatterer does not rely on sharp
resonances, it shows an increased robustness to external factors,
such as added noise due to differences in the working frequency,
relative permittivity of the scatterer, and pollution of the scat-
tered fields with random noise up to 20% of the mean value.
Scatterers that provide solutions to both a Fredholm equation
of type II and a second-order differential equation were demon-
strated. The design flexibility offered by the inverse design
process is extremely beneficial, as the scatterer can be designed
through numerous different EM solvers; however, such freeform
objects could be challenging for fabrication, especially if the
working wavelength is moved to the visible regime and nano-
fabrication is required. Various other methods of inverse design
for all-optical calculating metasurfaces have also been demon-
strated, including the ability to perform parallel computing.64–66

Finally, in a recent demonstration of the power of all-optical
calculations using metasurfaces, Fu et al.48 introduced metaim-
agers that were able to perform 1D and 2D differentiations,
alongside experimental results that proved the capabilities of
analog processing through examples of optical and biological
samples showing real-time edge detection and denoising
[Figs. 4(f)–4(g)]. The complex amplitude of the incident EM
waves was controlled through the design of the Si meta-atoms
at the working wavelength of 633 nm. The geometry of the
meta-atom is modulated to control the amplitude of the trans-
mitted light, whereas the in-plane rotation exploits a geometric
phase to control the phase response. The device consists of a
metalens element combined with an arbitrary secondary meta-
surface that imparts the desired transfer function onto the
transmitted light. Both doublet and singlet metasurfaces are pre-
sented. Although cascaded metasurfaces have been proven to
provide interesting optical responses,67–71 extra orders of com-
plexity are introduced into the fabrication and design in terms
of alignment and consideration of the optical path length of the
light that has been focused by the metalens. However, the dis-
tance between the metalens and computational metasurface pro-
vides a useful degree of freedom that helps to increase the field
of view and magnification of the resulting field. By combining
the required phase into a single metasurface, the complete sys-
tem is miniaturized at the expense of a reduced field of view
and magnification.

2.2.2 Tunable and multiplexing metamaterials

One of the key advantages that metamaterials, especially meta-
surfaces, hold is for multiplexing numerous responses into a
single device. Various methods have been proven to achieve
this, such as simply interleaving metasurfaces with different
functionalities,72,73 designing anisotropic meta-atoms that pro-
vide different optical responses depending on the polarization
of the incident light,74,75 as well as wavelength76 and incident

angle dependency.77 Recently, there has been a push toward de-
veloping metamaterials and metasurfaces that include tunable
properties after they have been fabricated.78 This has opened up
access to devices that have multifunctionality within a tiny foot-
print. Numerous methods of modulating the optical properties of
metadevices using external stimuli have been demonstrated, such
as through the use of liquid crystals,79–82 phase-change materi-
als,83,84 and physical strain.85,86 By arduously designing the meta-
surface to have a specific response under different stimuli, it has
been shown that a single device can perform multiple functions.
This section will review the progress of such multiplexed and
tunable systems for applications of all-optical computation.

Since multiple functionalities can be encoded into a single
metasurface, multiplexing different responses for different po-
larizations of light has been demonstrated extensively. One ben-
efit of metasurfaces is that phase information, which is generally
disregarded in conventional optics, can be accessed directly and
manipulated for direct phase contrast imaging. Huo et al.87 used
this idea to produce a metasurface that can be introduced to the
Fourier plane of a 4f system that acts either as a constant phase
filter, or a spiral phase filter, depending on the helicity of the
incident CP light [Figs. 5(a)–5(b)]. The spiral phase imparted
on the Fourier plane acts to introduce an optical vortex or orbital
angular momentum (OAM) with a donut-shaped intensity and
spiral phase to the incoming light, which when used to image
an object will result in edge detection. Sixteen titanium dioxide
(TiO2) meta-atoms are designed and arranged to make the meta-
surface for a resolution of around 3 μm that can work across the
whole visible regime. This functionality is enabled due to the
use of achromatic lenses in the 4f system and the broadband
response on the metasurface itself. This concept was expanded
by exploiting the multiplexing possibilities that metasurfaces
offer by Kim et al.89 By integrating the phase required for a
metalens with a spiral phase of TC 1, the single device was able
to perform isotropic 2D edge detection within an extremely
small form factor. Since the metalens phase is also encoded
into the metasurface, the requirement for the bulky 4f system
was relieved and confined into a single ultrathin device.
Hydrogenated amorphous Si (a-Si:H) was used as the material
for the meta-atoms, which were placed to encode the required
combination of metalens and spiral phases using Pancharatnam–

Berry (PB), also known as geometric phase. Since a PB phase is
related only to the orientation angle of the meta-atom, it inher-
ently allows for broadband functionality that depends only on
the dispersion of the material. By designing the NA of the metal-
ens to be fairly high, determined to be 0.8, an impressive
resolution down to 0.78 μm was experimentally demonstrated
through the successful demonstration of the edge detection of
red blood cells, highlighting the potential of such systems for
biomedical applications.

In an interesting example of a dynamically tunable metasur-
face that can be switched between bright field and differentia-
tion, Zhang et al.88 designed and experimentally demonstrated
a stretchable metasurface [Figs. 5(c)–5(d)]. By embedding a
Si metasurface into a layer of stretchable polydimethylsiloxane
(PDMS), under different amounts of strain, the two different
functionalities can be switched. The periodicity of the array of
meta-atoms is controlled through stretching the PDMS to pro-
duce a highly transparent film or a Laplacian operator. The
physical modulation of the meta-atom locations changes the
coupling between neighbors, allowing for the two different re-
sponses. A bandwidth of 60 nm with an NA of up to 0.25 was
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proven at the working wavelength of 1230 nm. The device
showed robustness to up to 50 cycles with no reduction in func-
tionality, highlighting the potential for use in real-life situations.
Furthermore, since the impulse response of the metasurface is
designed directly, there is no need for any bulky imaging sys-
tems, as no lens is required to perform an FT.

Another widely used method of achieving tunable optical re-
sponses with metasurfaces is to employ phase-change materials,
such as germanium antimony telluride (GST).90–92 Yang et al.93

used a GST variant, Ge2Sb2Se4Te1 (GSST) to dynamically
switch between bright-field imaging and edge detection through
the reversible, nonvolatile phase transition from crystalline to
amorphous GST. The designed metasurface was placed in the

focal plane of a 4f system and showed a polarization-insensitive
functionality at the working wavelength of 1550 nm. This is
where GSST shows the biggest modulation in optical properties
over the phase change, while maintaining a reasonable amount
of optical loss. For those reasons, using GST at visible wave-
lengths is generally quite difficult, as there is a large amount
of loss and the variance in optical properties is fairly weak.
Nevertheless, in the near-infrared regime, bright-field imaging
and edge detection were successfully demonstrated numerically.
Recently, a completely reconfigurable device that could pos-
sibly act as the basis for solutions to any problem using the gra-
dient descent method has been proposed, highlighting the
potential that metamaterials have in all-optical computing.94

Fig. 5 Multiplexed and tunable metamaterials for all-optical calculations. (a) Calculated and ex-
perimental demonstrations of the two spin-dependent masking functions under 530 nm incidence.
(i) The intensity distribution and (ii) phase profile of a Gaussian beam for LCP incidence, and (iii)
donut-shaped intensity distribution and (iv) spiral phase profile for a 1ℏ OAM beam for RCP in-
cidence. (v) and (vii) showmeasured nonparaxial interference patterns with a plane wavefront and
(vi) and (viii) show the output states corresponding to LCP and RCP incidence. Insets, handed-
ness of the incident light. (b) Images of undyed onion epidermal cells with a 20× objective lens.
(i)–(iv) Bright-field images captured with LCP incident light at the wavelengths of 480, 530, 580,
and 630 nm. (v)–(viii) Spiral phase contrast images captured under RCP incidence at the same
wavelengths. Scale bar, 100 μm. (c) Schematic of the strain tunable metasurface under (i) no
strain and (ii) 36% strain, along with the corresponding calculated transfer functions at the working
wavelength of 1230 nm. (d) Experimental demonstration of the switchable image properties for
(i) a sample of onion cells and (ii) an amplitude object of the number “2.” Images (a) and (b) re-
produced with permission from Ref. 87. Copyright 2020 American Chemical Society. Images
(c) and (d) reproduced with permission from Ref. 88. Copyright 2021 American Chemical Society.
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The progress of metamaterials for all-optical computational
operations has been profound, and such advances point directly
at the development of completely optical neural networks
(ONNs) that could be able to perform complex computations at
the speed of light. With the current speed of development of
high-resolution cameras in consumer products, such as smart-
phones, along with the large file sizes and an increase in the
amount of data that is being processed daily, such low-power
fully optical solutions could lead the way for the next generation
of computing.

3 All-Optical Machine Learning
Machine learning has been employed extensively in the field of
nanophotonics and metamaterials for forward modeling and
inverse design over the past few years.95–100 More recently,
metamaterials have been employed directly as the calculating
elements, allowing for processing of information at the speed
of light. Metasurfaces in particular have been proven to perform
all-optical matrix calculations through the ability to manipulate
the properties of light at defined spatial locations through the
correct design of subwavelength-sized meta-atoms.101–103 This
functionality is extremely important in the field of machine
learning, where models are trained through a combination of
matrix multiplications and backpropagation.

The processing of optical information has been a challenge
for optical circuits that are needed to produce all-optical
computers.104–106 Mathematically, artificial neural networks
(ANNs) consist of sequences of matrix products and nonlinear
functions. They must be implemented physically in the shape of
optical elements for the realization of all-optical ANNs. By em-
ploying metasurfaces to perform the matrix calculations, there is
no need for additional hardware, such as optical cables, as each
calculation can be mapped exactly to a specific meta-atom that
diffracts light to another specific location. Therefore, there has
been a lot of development of all-optical matrix operations
using metasurfaces that have been implemented as fully optical
ANNs that perform calculations at the speed of light with an
extremely low-energy consumption.105–110 Conventional ANNs
have already shown great promise for regression and classifica-
tion tasks, as well as at controlling the response of metamaterials
in real time.111 All-optical versions could be the next step toward
all-optical computations for complex tasks that require machine
learning.112 In this section, we review the recent progress in the
use of metamaterials, especially metasurfaces, for applications
of all-optical machine learning. We will start with a brief over-
view of the principles of how the metasurface-based ONNs
work based on the diffraction and propagation of EM waves.
For a more detailed breakdown of ANNs and machine learning
in general with relation to photonic applications, we refer the
readers to the following interesting review papers.113–116

ONNs are a physical manifestation of the multiple complex
matrix computations that are required for traditional ANNs
based on classical computing. However, rather than using digital
bits of “0” and “1,” the diffraction of the complex amplitude of
light can be exploited using flat optical elements with spatially
varying phase and amplitude modulation. Metasurfaces are an
obvious and noteworthy choice due to their similarity and al-
most one-to-one correspondence to ANNs, where each physical
meta-atom in a metasurface relates to one element, or neuron,
of the ANN. A schematic illustration is shown in Fig. 6(a). First,
we will compare the constituent elements of ANNs and ONNs
and explain the principle of ONNs in detail numerically.

For traditional computational ANNs, each neuron in each
layer plays four main roles: (1) collecting data transferred from
the previous layer, (2) multiplying the data by the set weight,
(3) processing the data with a nonlinear activation function,
and (4) sending the processed data to the next layer. Without
any nonlinear activation functions, the resulting ANN would
only be able to produce a linear function, regardless of the num-
ber of hidden layers; therefore, it is equivalent to a single-layer
perceptron.117 However, real-life data are generally nonlinear,
which means that nonlinearities in the ANN are of utmost im-
portance to solve complex problems. In an ONN, each neuron is
replaced with a physical meta-atom that plays a similar part,
namely, (1) collecting the light transmitted from the previous
layer, (2) modulating the phase, amplitude, and polarization
of the incoming light, and (3) propagating the light to the next
layer, which is generally modeled and calculated as a diffraction
problem. The biggest difference between ANNs and current
ONNs is the use of nonlinear activation functions. It should
be noted that due to the distinct lack of nonlinearity in the sys-
tem, the subsequent ONNs are strictly linear in nature. To ensure
brevity, here we refer to these linear ONNs as ONNs throughout.
Cascaded metasurfaces play the role of the physical counterpart
of the hidden layers in ANNs. 2D plane waves containing
specific images have been generally used as the input data for
ONNs as shown in Fig. 6(b). The desired output target that is set
as the output layer in an ANN is generally designed to be a spe-
cific intensity of the light at a designated position. The diffrac-
tion of light from each individual meta-atom can be described
by the Huygens principle; thereby, the light passing through a
meta-atom at each spatial location on a metasurface layer is
considered to be a secondary source that irradiates from that
location. The multiplied weight of an ONN is realized by

Fig. 6 Machine learning using all-optical neural networks.
(a) Comparison of the correspondence between ANNs and
ONNs. The ANN is made up of neurons and hidden layers, which
relate to the physical meta-atoms and cascaded metasurfaces in
ONNs. (b) The coordinate system required to design ONNs using
diffraction.
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manipulating the complex amplitude of the light at that position,
that is to say, the amplitude and phase of the incident light are
modulated. The mathematical basis for ONNs is explained in
the next section.

3.1 Mathematical Basis for ONNs

We examine the mathematical basis for ONNs here to help
understand the fundamentals of how diffractive ONNs work.
The coordinate system for the following formulas is shown
in Fig. 7(b). Using the Rayleigh–Sommerfeld formulation of
diffraction by a planar screen, we can calculate the light trans-
mitted from the i’th meta-atom of the l’th metasurface to the
j’th meta-atom of the (lþ 1)’th metasurface.120 In other words,
the light collected by the j’th meta-atom of the (lþ 1)’th meta-
surface is the integration of all the secondary sources generated
by every meta-atom of the l’th metasurface. The location of
each secondary source ~rli can be expressed as ~rli ¼ ðxli; yli; zlÞ.
Then the j’th position of the (lþ 1)’th layer, ~rlþ1

j , where the
light is gathered, can be expressed as ~rlþ1

j ¼ ðxlþ1
j ; ylþ1

j ; zlþ1Þ.
As shown in Fig. 7(b), it is assumed that light propagates in the
z direction, so the values of z are all equal for a given layer.
The contribution of the i’th meta-atom on the l’th layer to the
j’th meta-atom on the (lþ 1)’th layer is, therefore, determined
by the following equation:

HHuy
z ð~rlþ1

j − ~rliÞ ¼ Gð~rliÞ · hHuyz ð~rlþ1
j − ~rliÞ; (6)

where Gð~rliÞ is the state of light immediately after exiting the
i’th meta-atom of the l’th layer. Gð~rliÞ is the product of the elec-
tric field uð~rliÞ that is incident on the meta-atom, and the trans-
mission coefficient tð~rliÞ that is determined by the design of the
meta-atom [Eq. (7)]. The meta-atom can be designed to manipu-
late the complex amplitude of the incident light, i.e., both the
real part, related to the intensity t, and the imaginary part, related
to phase delay φ:

Gð~rliÞ ¼ uð~rliÞ · tð~rliÞ; (7)

tð~rliÞ ¼ t · ei·φ. (8)

hHuyz ð~rlþ1
j − ~rliÞ is the Huygens wavelet of such a secondary

wave source of the i’th meta-atom of the l’th layer as shown
in the following equation:

hHuyz ð~rlþ1
j − ~rliÞ ¼

−1
2π

�
ik − 1

R

�
ikRzlþ1

R
−zl
R

; (9)

where R is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxlþ1

j − xliÞ2 þ ðylþ1
j − yliÞ2 þ ðzlþ1 − zlÞ2

q
, and

k is the wave vector of light in free space. Finally, the total
electric field at ~rlþ1

j , uð~rlþ1
j Þ, is calculated as the sum of all con-

tributions of the sources at ~rli as expressed as Eq. (6), which is
given by

uð~rlþ1
j Þ ¼

ZZ
∞

−∞
HHuy

z ð~rlþ1
j − ~rliÞdx dy; (10)

where x and y are integrated in the plane of the l’th metasurface.

To calculate the required phase and amplitude modulations at
each spatial location of the metasurface that needs to be encoded
with meta-atoms, Eq. (8) can be used as the forward function of
the ONN. It should be noted that any alternative propagation
formula can be used in place of Eq. (8), as long as it is physically
correct. The “weight” of each neuron is optimized through an
iterative backpropagation algorithm, in the same way as ANNs
are trained. The output is generally calculated as the mean
squared error between the calculated and desired amplitude of
the output electric field, i.e., ðjuð~rlþ1

j ÞjÞ2. The “weights” of each
neuron are then encoded to the metasurface through the optical
properties of the designed meta-atoms based on their calculated
complex transmission or reflection coefficients.

3.2 Metasurface-Based ONNs

Since the propagation of light is a linear operation, a fundamen-
tal challenge occurs for ONNs with regard to performing
complex functions, one of the key abilities that ANNs have
been exploited for. Furthermore, unlike electric signals that
can be boosted using simple amplifiers, light signals do not
have an analogous operation to help increase the transmission.
Therefore, the intensity of the light unavoidably becomes
weaker as it passes through each metasurface. This makes it
difficult to construct deep ONNs with many layers and therefore
limits more complex network structures. In addition, since
static metasurfaces are fixed after fabrication, backpropagation
through the ONN cannot be performed optically, so the weights
of each neuron must be calculated computationally before im-
plementing them physically with meta-atoms. ONNs can be in-
terpreted as all-optical computations that convert the optical
properties of a given input EM wave into an output EM wave
that provides some information about the input, such as classi-
fication. All properties of light can be exploited in this way, in-
cluding but not limited to the amplitude, phase, and polarization.
In this section, we will review the latest work in the field and
discuss the key limitations of ONNs that must be overcome.

In one interesting experimental demonstration of an ONN
using metasurfaces, Qian et al.108 demonstrated two cascaded
metasurfaces capable of performing basic logic operations at
microwave frequencies (17 GHz). Seven logical operations
(“NOT,” “OR,” “AND,” “NOR,” “XNOR,” “NAND,” and
“XOR”) were shown to be feasible through numerical calcula-
tions and furthermore, three of these operations (NOT, OR, and
AND) were demonstrated experimentally. Each logical opera-
tion was spatially encoded in the input mask layer, as shown
in Fig. 7(a). The amplitude of the output EM wave was desig-
nated to be focused into one of two spatial locations depending
on the result of the operation. The ONN was trained to find the
required transmission coefficients needed for the metasurfaces;
however, rather than using the complex amplitude of the EM field,
phase-only metasurfaces were implemented. Therefore, meta-
atoms with the phase to cover the whole 2π range and high trans-
mission were designed by varying the height of a square dielectric
meta-atom. The high transmission and almost linear phase of the
designed meta-atoms are shown in Fig. 7(b). Using this two hid-
den-layer ONN [Fig. 7(c)], the results were experimentally veri-
fied [Fig. 7(d)], with most of the energy in the EM fields being
focused into one of the two regions. Rather than using a simple
mask that shapes the input EM field, active modulators such as
SLM or digital micromirror devices can be used to change the
input EM fields at high frequency, which could then be processed
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Fig. 7 Utilization of metasurfaces for ONNs. (a) Schematic of the input mask layer, showing the
logic operation of “1 + 0.” (b) Amplitude and phase response of the dielectric meta-atoms.
(c) Experimental setup of the two cascaded metasurfaces. (d) Distribution of the measured nor-
malized intensity of the EM field. Most of the energy is focused to the region denoted for 0 or 1.
(e), (f) ONNs for image classification and imager. (e) Schematic of the (i) MNIST data set
classification and (ii) imager. (f) (i) An example of an input image expressed in phase and (ii)
the output energy distribution. (iii) Confusion matrices and (iv) energy distribution percentages
for experimental and numerical results of the fashion data set. (g) On-chip ONN working at visible
wavelengths for image classification tasks using (i) MNIST and (ii) fashion data sets for x and y
polarized light, respectively. (h) The confusion matrices for the (i) MNIST and (ii) fashion data sets
for 80 randomly selected images. Images (a)–(d) reproduced with permission from Ref. 108.
Copyright 2020 Springer Nature Group. Images (e) and (f) reproduced with permission from
Ref. 118. Copyright 2018 The American Association for Advancement of Science. Images
(g) and (h) reproduced with permission from Ref. 119. Copyright 2022 Springer Nature Group.
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at the speed of light using the well-trained ONN. Various other
examples of optical logic gates have been demonstrated, such as
on-chip 1D metamaterials121 and 2D images.122,123 These kinds of
logic operations could have profound implications for applica-
tions, such as real-time object recognition.

In an example of image classification using ONNs, Lin
et al.118 proposed ONNs made up of five cascaded metasurfaces
to classify the well-known handwritten number data set from
MNIST and the fashion item data set from ImageNet, as well
as an imager, which could be considered to be a physical im-
plementation of an autoencoder [Fig. 7(e)]. The ONN was de-
signed to operate in the terahertz regime. To demonstrate the
robustness of image classification, the MNIST data were used
as the input EM wave as amplitude objects, whereas the fashion
items were defined as phase objects; both were upsampled and
binarized before being physically encoded through 3D printed
masks. The required phase at each spatial location in the hidden
layers was physically encoded by modulating the thickness of
each 3D-printed meta-atom, allowing for complete coverage of
the 2π space. The intensity of the output light was spatially en-
coded to 10 different areas to determine the classification of
the images. The imager produced a lens type functionality that
displayed a clear image of the input after propagating through
the five-layer ONN. The classification accuracy of the MNIST
and fashion data sets was 93.39% and 91.75%, respectively, for
a numerically implemented ANN [Fig. 7(f)], while the experi-
mental accuracy of the ONN reached 86.60% and 81.13%.
Using full complex amplitude modulation rather than phase-
only metasurfaces as the hidden layers, the accuracy of the ONN
for the fashion item data set was improved to 86.33%, highlight-
ing the promise of fully exploiting the vectorial nature of light
for optical calculations. Unlike logic operations, where all of the
output energy should be confined to the true or false regions,
similar to ANNs, the intensity at each location can be interpreted
as a probability for the classification images. However, post-
processing of the output is required, as there is no physical
implementation of a softmax layer.

Recently, research about metasurface-based ONNs working
at visible wavelengths has been proposed and experimentally
demonstrated. By exploiting the multiplexing nature of metasur-
faces for use in ONNs, the number of functions that a single
ONN can achieve has been increased.119 By employing polari-
zation-dependent dual-channel metasurfaces in the ONN, the
exciting possibility of image classification of both the MNIST
and fashion data sets in a single device was proven. By design-
ing asymmetric meta-atoms that have different optical responses
to x- and y-polarized light, an on-chip ONN integrated with a
complementary metal-oxide semiconductor sensor with an op-
erating wavelength of 532 nm was experimentally demonstrated
for eight different classes [Fig. 7(g)]. This showed a match of
93.75% and 95% between the simulations and experiments for
the MNIST and fashion data sets, respectively, with only a few
errors [Fig. 7(h)]. Subsequently, a metasurface-based ONN op-
erating at the wavelength of 633 nm has also been proven.124 An
accuracy of 98.05% in experiment was demonstrated for image
classification using 10 classes of the MNIST data set. By integrat-
ing the metasurface with an SLM, the input EM field can be elec-
trically modulated. However, for both of these systems, only a
single hidden layer was fabricated, highlighting both the difficul-
ties for precise alignment of the cascaded components, as well as
the power of analog calculations using EM waves for image clas-
sification problems.

The ability of ONNs to process light and perform calcula-
tions at the speed of light has been proven extensively for
a diverse number of applications so far; however, these have
been mostly focused on image classification. Examples of OAM
processing have been numerically demonstrated,125,126 as well as
using metamaterials in the acoustic regime.127 Up to now, exper-
imental demonstrations of ONNs have been generally limited to
longer wavelengths due to difficulties in the fabrication of nano-
scale metasurfaces for use at visible wavelengths, and especially
due to the added complications that arise from aligning meta-
surfaces spatially at such small-length scales. Nevertheless,
there has been significant progress in cascading metasurfaces
that operate at visible wavelengths with successful demonstra-
tions in metaholography and metalenses,128,129 which prove the
feasibility of ONNs using visible light. The next step toward
ONNs that can be trained and modulated after fabrication is
to include a form of tunability to the metasurfaces. In the next
section, we will look at the current state of tunable metasurface-
based ONNs.

3.3 Programmable Metasurface-Based ONNs

The metasurface-based ONNs presented so far were all passive
systems that were preoptimized computationally before being
implemented physically. After fabrication, the designed func-
tion is fixed and cannot be modulated due to the lack of active
modulation at the meta-atom scale. Active and multiplexed
metamaterials have been a hot topic recently as discussed in
the previous section. For the active modulation of ONNs,
so-called coding, digital or programmable metamaterials are
required.130 This allows for the complex transmission or reflec-
tion coefficient of each meta-atom to be modulated at will after
fabrication. In this section, we will discuss the recent progress in
tunable metasurface-based all-optical ONNs.

By employing a 2-bit programmable metasurface, Li et al.131

demonstrated an in situ digital imager using field-programmable
gate arrays (FPGAs) to program the metasurface in real time,
modulating the desired radiation patterns based on machine-
learning guided imaging at 3.2 GHz. After training, the imager
was able to monitor and recognize human movement, and
even infer the body position when blocked from direct sight
[Fig. 8(a)]. With just 100 measurements, reasonable results
were acquired when training using machine-learning methods
through the data embedding principal component analysis tech-
nique. A similar idea was proposed but with the addition of an
ANN to further process the data from the programmable meta-
surface imager.133 It was shown that the system was robust to
noise from Wi-Fi signals that could interfere with the signals
at ∼2.4 GHz, and that it could successfully monitor the move-
ments of humans, on both the macroscale, in terms of move-
ments and gestures, and the microscale, in terms of subtle
physiological states. More recently, a high-performance imager
using a programmable metasurface trained using the multilayer
perceptron method has been reported.134 Under noisy condi-
tions, the results show an 18% improvement on the random scat-
tering method, along with an improvement in the reconstruction
of the input image. Such programmable metasurface-based
imagers have set the foundations for tunable ONNs; however,
each only employed a single tunable metasurface to achieve
its functionality.

In a notable example of a tunable ONN, Liu et al.132 proposed
a five-layer tunable ONN using FPGAs to modulate the
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Fig. 8 Programmable metasurfaces for ONNs. (a) Optical images and reconstructions from the
single-layer programmable metasurface. Experimental demonstrations of (b) image classification
between the letter “I” and square brackets, (c) simultaneous transmission of four orthogonal codes,
and (d) on-site reinforcement learning using the programmable five-layer ONN. Image (a) repro-
duced with permission from Ref. 131. Copyright 2022 Springer Nature Group. Images (b)–(d)
reproduced with permission from Ref. 132. Copyright 2022 Springer Nature Group.
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complex transmission coefficient of each meta-atom by manipu-
lating the voltage of each amplifier chip. The working frequency
of the ONN of 5.4 GHz lies in the microwave regime, and each
metasurface layer was made up of just 8 × 8 meta-atoms, which
is generally fewer than the number of neurons that are used in
ANNs. Nevertheless, the ONN demonstrated an experimental
accuracy of 100% for a simple classification problem with
images of the letter I and square brackets [Fig. 8(b)] as well as
digits from 1 to 4. Furthermore, the same ONN with different
voltages provided by the FPGAs was used to demonstrate a
code division multiple access task using the first metasurface
as an encoder and the following four as a decoder [Fig. 8(c)].
Due to the independence of wave propagation, each code can be
successfully decoded, even when they are overlapping. Space-
time telecommunications were then demonstrated using this
encoder and decoder system with an error rate of just 0.52%
at a transmission rate of 1000 bit s−1. Finally, the fully program-
mable ONN was dynamically trained to focus the EM energy
into arbitrary locations using reinforcement learning [Fig. 8(d)].
More than 90% of the energy in the output EM field was suc-
cessfully concentrated in the target area after the active training.
Typically, the complex amplitude of the transmission coefficient
has been calculated numerically in advance using a standard
ANN; however, the on-site training of the ONN using reinforce-
ment learning demonstrates the key ability of being able to ad-
just and program the optical response in relation to interactions
with an unknown environment. This important result indicates
the potential for programmable ONNs to be trained actively on
any new optical problem without the need for a training data set,
while also alleviating the requirement of accurate simulations
and exact physical implementation as the ONN directly updates
its optical properties based on the exact experimental envi-
ronment.

Although the field of metasurface-based ONNs has been de-
veloping at a remarkable rate, there are still a few major prob-
lems that must be solved in order to fully utilize all optically
trainable and reconfigurable ONNs that can solve complex
problems. First, only a few experimental demonstrations of the
full modulation of the complex amplitude of the transmission or
reflection coefficient have been proven, a component that has
been proven to improve the accuracy of ONNs.135 A form of
feedback between the output of the ONN and the optical proper-
ties of the individual meta-atoms must be developed to allow
for all optical backpropagation and training without the need
for a computer. One potential solution has been suggested
theoretically.136 This could also lead to the requirement of the
development of physical implementations of other layers that
are often used in ANNs, as currently, the metasurfaces are
limited to acting as standard linear layers. For example, the
development of physical layers for functions, such as softmax,
max pooling, and normalization layers, could greatly improve
the performance of ONNs, especially if they are to be trained
optically. An optical version of a dropout layer has already
been demonstrated137 and also implementations of recurrent
ONNs.138–140 For metasurface-based ONNs to achieve the ability
to solve complex nonlinear functions, a problem that ANNs are
particularly astute at, a method of implementing an optically
activated nonlinearity should be developed, as we highlight
again that the current state-of-the-art work presented here
consists of only linear systems.141 It has been shown that non-
linear ONNs outperform their linear counterparts,118,142 and vari-
ous methods of physically implementing nonlinearity in ONNs

without metasurfaces have been demonstrated, such as using
thermal atoms,143 Kerr-type nonlinear materials,144 and induced
transparency through sandwiching quantum dots between met-
allic nanoparticles.145 Materials, such as phase-change materi-
als,146 semiconductors,147 and liquids,148 are potential options to
produce nonlinear responses, and the correct choice would de-
pend on the wavelength regime under consideration to provide a
response at a reasonable power and efficiency.149–153 Finally, with
respect to miniaturization and operation at visible wavelengths,
new methods of manipulating individual meta-atoms at the
nanoscale must be developed experimentally. This has been per-
formed optically through the use of phase-change materials;
however, this requires high-power lasers and long quenching
times. Additionally, their optical properties in the visible regime
limit their widespread application due to large extinction coef-
ficients that would limit the performance of ONNs.154–157

Nevertheless, the rapid development of ONNs has proven their
capability to perform all-optical calculations at the speed of light
and has shown great potential for classification problems in par-
ticular, which have direct applications in fields such as computer
vision for semantic segmentation and LiDAR.158,159

4 Conclusion and Outlook
The general consensus is that the likelihood of photonics to
completely replace electronics is fairly low, due to the extremely
mature electronic systems and fabrication processes that are
already in place. However, as discussed in this review, the
progress of photonics toward all-optical computation has devel-
oped at an impressive rate. Before there is any chance of pho-
tonics to replace electronics, it is highly likely that the two will
be developed hand in hand as complementary technologies
rather than competing ones. The integration of photonics with
Si nanoelectronics has already begun,160–162 with notable exam-
ples of photonic systems on a chip.163,164 The biggest drawback
of such systems is that a lot of energy is wasted converting
photons to electrical signals and back.

All-optical computing systems are naturally larger than the
electronic chips, which could be a limitation that needs to be
addressed in the future. However, their ability to use multiple
wavelengths of light highlights their potential for parallel
processing of big data with little energy cost. Another interest-
ing possibility that is opened up with using completely photonic
systems is the chance to directly integrate optical data
storage.165,166 In the short term, integrated photonic systems us-
ing metasurfaces have already shown great promise for specific
applications such as all-solid-state LiDAR, which could be in-
fluential in autonomous driving,167,168 as well as in biophotonics
for noninvasive diagnostics,169–172 and advanced sensors with
extremely small physical footprints. The use of EM waves for
all-optical computation has additional benefits due to the vectorial
nature of light, and the capacity of such diffractive surfaces has
been investigated.173 This means that advanced functionalities
can be designed into the optical components themselves, as well
as unlocking new options that cannot be accessed using tradi-
tional computations. One example in particular that exploits the
vectorial nature of EM waves is phase imaging, where the con-
trast of phase objects can be significantly increased, promoting
new avenues of bioimaging and sensing.174–176

The engineering of materials to suppress optical losses
could be influential in designing meta-atoms with unity trans-
mission,177–179 allowing for highly efficient metasurfaces, and
therefore, easing the limitations of how many metasurfaces
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can be cascaded in the hidden layers of ONNs. In addition,
large-scale fabrication techniques, such as nanoimprint lithog-
raphy,180–187 holographic lithography,188 and self-assembly,189–191

could allow for the mass production of metasurfaces for ONNs.
Together with advancements in nonlinear responses,192 deep
ONNs with nonlinear activation functions could be a reality.
Furthermore, with coding metasurfaces that allow for the
manipulation of the properties of single meta-atoms or unit cells
in real time, ONNs could be trained completely optically, prov-
ing that the future has the possibility to be driven by optics.
Work on such devices has recently been undertaken in the
microwave regime193,194 and programming metasurfaces through
the power of touch,195 as well as examples of spatiotemporal
functionality.196–201 Limitations related to controlling and align-
ing metasurfaces down to the meta-atom level at shorter wave-
lengths hinder the progress of fully optical ONNs working at
visible wavelengths. However, the standard working wave-
lengths of LiDAR lie in the near-infrared region, possibly easing
such intricate fabrication and control constraints, as well as
opening the door for the inclusion of tunable materials such
as ITO and GST.

Current methods for all-optical computing are based on ei-
ther direct processing of EM waves, through the design of
metamaterials with inherent incident angle dependencies, or
through the manipulation of the information in the Fourier
plane of a 4f system. Although these techniques allow for
numerical calculations at the speed of light, their optical proper-
ties are generally fixed, which allows them to only solve a sin-
gle function after fabrication. The design of actively tunable
metamaterials that can be modulated at will to solve arbitrary
functions would be a giant leap toward optical computing and
even quantum computations using single-photon sources. To be
able to solve both even and odd functions with a single meta-
surface, a method of introducing tunable symmetry breaking in
the x and z directions must be realized. In terms of ONNs, the
obvious limitation is that they are currently distinctively linear
solvers, so new ways to introduce optical nonlinearities at rea-
sonable energies should be uncovered. Furthermore, there must
be substantial advancements in 3D nanofabrication methods to
produce ONNs that operate at visible wavelengths with multi-
ple hidden layers.

In summary, all-optical computing at the speed of light using
metamaterials has developed extensively over the past decade,
with numerous demonstrations that could have potential impact
in real-life applications. One exciting advancement is that of
all-optical machine learning using diffractive neural networks;
however, there is still a lot of research yet to be done before their
implementation outside of research labs. Although there is a
long way to go, especially regarding all-optical training, includ-
ing backpropagation and active feedback, along with operation
at visible wavelengths and optical nonlinearities, the fundamen-
tal work toward a completely photonic brain that can learn, pro-
cess, and store masses of data is well under way.
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