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ABSTRACT. The dynamical behavior of opto-mechanical systems is crucial for ensuring the per-
formance in noisy environments. In particular, vibration mitigation is one of the
design drivers for pointing and wavefront error requirements. During the initial devel-
opment stages, the typical design process is based on nominal material properties,
geometries, and interface behaviors, resulting in a unique set of frequency response
functions. However, this approach lacks robustness and often necessitates exten-
sive redesigns following initial testing or the use of significant margin factors.
Conversely, incorporating deviations from the baseline in a statistical manner is
computationally heavy and often constrained by confidentiality issues. We give
an overview of the most common techniques that can be used in large projects
to account for the uncertainty in material properties. We also present a computation-
ally light method aimed at deriving a robust family of system responses via a simple
relationship between uncertainties in material properties and system responses.
The proposed method is also applicable to models in a modal space representation.
We compare a few parametric methodologies that account for material property
uncertainties in a rigorous way, showcasing their use with real opto-mechanical sys-
tems for both ground and space telescopes. We show that the simplified method
yields results comparable to more complex algorithms, offering a practical solution
for early-stage design considerations.
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1 Introduction
Opto-mechanical systems are at the heart of many advanced instruments, encompassing a diverse
range of applications, including astronomy,1,2 fundamental physics,3 Earth observation,4 and
communication. These systems integrate optical components with mechanical elements, forming
complex and delicate hardware that demands meticulous design, fabrication, and operation.
However, despite significant heritage and advancements in analysis, uncertainties regarding
design remain inevitable and can manifest in various forms, imposing critical challenges on the
performance and reliability of these systems. Uncertainties in opto-mechanical systems can arise
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from geometrical, material, environmental, and operational variations and can adversely affect
the overall performance.

If we consider a mechanical system and build several copies, we would note that, given a
certain frequency response function (FRF), its realizations are rather consistent at low frequen-
cies and diverge in high bands where there is a high modal density.5 The dispersion in this range
can be tackled with statistical energy analysis (SEA) techniques.6 At low frequencies, the
dispersion is instead more deterministic and can be foreseen with a model, knowing the deviation
of the value of the physical parameters. Such parameter uncertainty can be tackled directly with
the finite element method (FEM) by running large sets of statistical simulations. However,
obtaining large realizations of FRFs from a high-accuracy FEM model can become prohibitive,7

and in large projects in which dynamic sub-models are often exchanged in a reduced formulation,
the link between parameters and dynamic response is lost.

The presence of uncertainties is then one of the reasons for the use of margin factors. For
computational efficiency and agility, the design is made considering nominal parameters and
including margins, particularly in hardware that relies on precise optical path lengths or has tight
constraints for modal decoupling. Margins mitigate the risk of non-compliance happening later
during system implementation but lead to sub-optimal design solutions and lack a statistical
meaning.

Varying system parameter uncertainties can lead to non-compliance when shifting eigenfre-
quencies across distinct bands. In Ref. 8, a frequency-dependent vibration requirement case for
an extremely large telescope (ELT),9 optical system is presented. This example demonstrates
requirement compliance variability reaching up to a factor of 3×with abrupt transitions attributed
to control systems cutoffs. A robust design and analysis are thus crucial.

Recent works10–13 have investigated the issue of uncertainty of micro-vibrations in space-
craft and proposed the modified Craig-Bampton method. The Craig-Bampton method14 is one of
the classical tools for dynamic sub-structuring, particularly common in aerospace, in which dif-
ferent entities with competing commercial interests are working on separate subsystems. The
proposed modified Craig-Bampton allows for accounting for a measured variability in the modal
response via a randomization of the natural frequencies and the modal participation factors of the
subsystems. This technique accelerates the generation of a family of random systems and FRFs
to be used in the analysis when necessary.

The effects of deviations of material and geometric parameters on the variability of a vibra-
tion transfer function of a simple structure are shown in Ref. 15, but without providing possible
strategies on how to tackle them during the development phase.

Uncertainty plays a crucial role in all space hardware that is coupled to a rocket during
launch. The launch environment is one of the key design drivers, dictating modal and structural
requirements. In Refs. 16–18, reviews of the challenges posed by the uncertainty are presented,
providing qualitative examples and describing the management and technical limitations of tack-
ling the issue. In this regard, Ref. 19 shows how unrepresentative structural predictions may lead
to overtesting.

Reference 20 uses a clever combination of numerical models with different fidelity levels to
quantify the effects of parametric uncertainty in the design of complex, large-scale, multidisci-
plinary systems such as the James Webb Space Telescope. This methodology relies on the avail-
ability of physical models and follows a Monte Carlo approach, although with a much more
efficient strategy than the simple brute-force with high-fidelity simulations.

A common approach to uncertainties is the use of margin a model uncertainty factor as
described in Ref. 21. However, this approach heavily relies on previous engineering knowledge,
which may not always be available.

In general, uncertainty quantification and propagation have been extensively investigated for
various engineering systems and processes.22–24 With the Monte Carlo approach, it is possible to
perform uncertainty quantification also on large-scale projects.20,25 This is, however, limited by
the real availability of physical models and can be computationally intensive. The use of other
modern methodologies in large-scale projects is often impractical.26

With this paper, we aim to provide the technical community with hands-on tools that re-
present a step forward in the design practice, avoiding the complexities of the most recent meth-
ods and the over-simplification of margin factors. In particular, the final goal is an approach that
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does not require the availability of detailed physical models and lengthy simulations. A corner
reference for our paper is Ref. 27, which derives a local expansion-based method to link the
uncertainty of design parameters to an FRF realization. It introduces the use of an error propa-
gation approach in which a small change in a system parameter is mapped to a change in eigen-
frequencies and eigenmodes. We take the method of Ref. 27 and further investigate and
streamline it. We then propose a completely new approach that, due to a simplified relationship
between uncertainties in material properties and system responses, allows for deriving a robust
family of system’s responses that, given a nominal FRF, requires no additional FEM simulations
and limited knowledge of the system. This approach also avoids issues related to confidentiality
constraints, which limit the availability of physical models, and can be used with reduced and
modal representations.

We focus on the opto-mechanical systems not only because they are often sensitive to vibra-
tions, both on-ground and in space, but also because they have recurrent features that help to
define a common approach. Recurrent features are related, for example, to the similarity of a
mirror cell to a cantilevered beam with a mass at its extremity. This topological analogy allows
us to propose and validate a general relationship between material property uncertainty and a
system’s response envelope. This link is useful especially in the early design phase, when there
are no measured data available.

The article is organized as follows. In Sec. 2, we review four methods suitable to the
generation of random systems based on parameter uncertainty, including our proposals. In
Sec. 3, we introduce three real opto-mechanical designs, and in Sec. 4, we apply the four methods
to them to assess their performance. In Sec. 5, we draw some conclusions and discuss future
developments.

2 Methods
Accounting for parameter uncertainty in the preliminary design means being able to link a known
stochastic value of key material and geometrical properties to either a random set of FRFs, to be
used in dynamical simulations, or a robust FRF definition that at each frequency gives a
conservative amplification factor, which typically means a higher amplification. In other words,
a curve that envelops all of the expected FRF realizations.

We focus here on the material properties, such as Young’s modulus and density. Geometric
properties are more system specific but can be tackled with the methods described altogether.

2.1 Deterministic Finite Element Monte Carlo Method
In the mid-to-low frequency band, the modal behavior is deterministic. The deterministic finite
element Monte Carlo (DFEM) method is able to foresee the dynamic of a given system. The
limitation of this approach is that, to derive a large number of realizations of system responses,
many simulations need to be performed with a significant computational burden.7

Focusing on the material properties, given the system parameter p (e.g., Young’s modulus),
we run modal simulations randomizing p with a Gaussian distribution in a Monte Carlo fashion.
For each iteration, we build a dynamic model and obtain the FRFs at all points of interest,
allowing for a statistical treatment of the output. Given the deterministic nature of the problem,
we consider these results as the benchmark. It goes without saying that, in a typical development
process, the designer also needs to account for model inaccuracies, such as the stiffness of an
interface.

Estimating an FRF in each finite element simulation is a heavy computational task. To facili-
tate this step, we use a model reduction approach based on the typical modal superposition.28,29

The complete procedure is as follows:

1. Perform the modal analysis of the ith realization of the system with the ith value of the
parameter p to be randomized.

2. Export j (user-defined value) natural frequencies and mode shapes for each simulation.
The mode shapes are evaluated in a subset m (user-defined value) of selected points of the
model considered of interest, each one having 6 degrees of freedom (DoFs). These points
can either be nodes of the meshed volume or remote points linked to surfaces with a rigid
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body connection with either a deformable or rigid formulation. In the deformable case, the
points provide the average position and attitude values of the attachment nodes.

3. Given the ith simulation results, write the model dynamics in state space representation. To
do so, we name xiðtÞ the following vectors:

EQ-TARGET;temp:intralink-;e001;114;686xiðtÞ ¼ fx1;iðtÞ; x2;iðtÞgT ¼ fqiðtÞ; q̇iðtÞgT; (1)

where qiðtÞ is the vector containing the j solutions to the model equations of motion in
modal coordinates assuming constant damping ratio ζ, i.e.:

EQ-TARGET;temp:intralink-;e002;114;638q̈iðtÞ þ 2ζωn;i _qiðtÞ þ ω2
n;iqiðtÞ ¼ ΦT

i F; (2)

where F is the vector containing the 6m inputs to the system, ωn;i is the j × j matrix con-
taining the j natural frequencies of the ith simulation along the diagonal, and Φi is the
6m × j mode shapes matrix of the corresponding model, i.e.,

EQ-TARGET;temp:intralink-;e003;114;577Φi ¼

2
6666666666664

ϕ1;1;1 : : : ϕ1;1;j

: : : : : : : : :

ϕ1;6;1 : : : ϕ1;6;j

: : : : : : : : :

ϕm;1;1 : : : ϕm;1;j

: : : : : : : : :

ϕm;6;1 : : : ϕm;6;j

3
7777777777775
; (3)

where ϕm;z;j is the mode shape evaluated at the zth DoF (z ∈ f1; : : : ; 6g) of the mth point
for the jth frequency.

To express the output displacements as functions of the input displacements uðtÞ, it is
possible to write the force FðtÞ as

EQ-TARGET;temp:intralink-;e004;114;407F ¼ kuðtÞ; (4)

where k is a spring with a constant stiffness and is used to replicate seismic shifts between
the ground and the structure.

As a result, the state space representation becomes

EQ-TARGET;temp:intralink-;e005;114;348ẋiðtÞ ¼ AixiðtÞþ kBiuðtÞ yiðtÞ ¼ CixiðtÞ; (5)

where yiðtÞ represents the displacements at the desired points in the physical space, _xiðtÞ is
the state space vector, and matrices Ai, Bi, and Ci are equal to

EQ-TARGET;temp:intralink-;e006;114;300Ai ¼

2
6664

0 I2
4 \

−ω2
n

\

3
5

2
4 \

−2ζωn

\

3
5
3
7775; (6)

EQ-TARGET;temp:intralink-;e007;114;219Bi ¼
�

0

ΦT
i

�
; (7)

EQ-TARGET;temp:intralink-;e008;114;188Ci ¼ ½Φi 0 �; (8)

where 0 and I are the j × j null and identity matrices, respectively.
4. Write the state space representation in the Laplace domain assuming zero displacement

and velocity in the derivation:

EQ-TARGET;temp:intralink-;e009;114;144sx̃i ¼ Aix̃i þ kBiũ ỹi ¼ Cix̃i; (9)

where s is the complex variable and ~xi, ~yi, and ~u are the Laplace transform of xiðtÞ, yiðtÞ,
and uðtÞ, respectively.

5. Compute the transfer functions between the state and the input displacements and between
the output and the input displacements, respectively, as
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EQ-TARGET;temp:intralink-;e010;117;549GiðsÞ ¼ kðIs − AiÞ−1Bi; (10)

EQ-TARGET;temp:intralink-;e011;117;519HiðsÞ ¼ kCiðIs − AiÞ−1Bi; (11)

where GiðsÞ and HiðsÞ are vectors with dimensions that are equal to the total number of
DoFs of the system (i.e., 6m).

6. Extract the FRFs at the DoFs of the desired points.

In Fig. 1, we show a family of FRF curves generated with the DFEM method applied to one
case study detailed in Sec. 3. The FRFs are extracted at one point in the structure considering a
Gaussian distribution of Young’s modulus with a normalized standard deviation of 5%. The red
curve is the þ 1σ standard deviation at each frequency. This þ 1σ curve can be used as a
conservative FRF for further performance analyses.

2.2 Modal Propagation
In a modal representation, a change in a system parameter p (e.g., Young’s modulus) results in
variations in matrices ωn and Φ. The variations can be linearized according to Eqs. (12) and
(13),27 providing a direct link from a parameter uncertainty (δp) to model uncertainties
(δωn and δΦ):

EQ-TARGET;temp:intralink-;e012;117;335δωn ¼
∂ωn

∂p
δp; (12)

EQ-TARGET;temp:intralink-;e013;117;287δΦ ¼ ∂Φ
∂p

δp: (13)

In this case, two FE simulations are necessary: one simulation is run in the nominal configuration
of the system and one with a small (e.g., 1%) variation in p. The simulations provide the desired
link from parameter uncertainty to model uncertainties, i.e., δωn and δΦ. Given a Gaussian dis-
tribution of the parameter δp, we can randomize the nominal model by perturbing natural
frequencies and mode shapes together according to Eqs. (12) and (13). The derivation of the
corresponding FRFs is then straightforward.

The modal propagation method (MP) is computationally lighter than the DFEMmethod, but
it still leaves room for some further simplification and computational time saving. The use of the
mode shapes coupled with the modal frequencies is not easy to interpret until final results are
obtained and does not provide a general forecasting relationship between parameters and
response functions.

2.3 Frequency Propagation
The frequency propagation method (FP) is the first of our proposals, and it is simply derived from
the MP: the uncertainty δp is propagated to δωn with Eq. (12), but neglecting the effect on the
mode shapes of Eq. (13), which becomes

50 100 200 500
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0.100

1

10

Frequency (Hz)

FR
F

(-)

DFEM simulations

+1� standard deviation

Fig. 1 Example results of the DFEM. The method is applied considering a standard deviation of
Young’s modulus of 5%. The red curve is the þ 1σ standard deviation of the generated points at
each frequency.
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EQ-TARGET;temp:intralink-;e014;114;736δΦ ≈ 0: (14)

If the stiffnesses of a system change all proportionally, the modal shapes do not change. Only the
eigenfrequencies do. This can be seen in a straightforward way in a lumped model with springs
and masses.

Pragmatically, the proportional change of stiffnesses is justified in the case of a support
structure for which we can suppose the main material is one and is probably coming from the
same supplier and same batch. Therefore, the uncertainty is correlated in all its parts. Deviations
due to parts in other materials or different origins are supposed to be a second-order effect.

Given a Gaussian distribution of the parameter δp, we can randomize the nominal model by
perturbing natural frequencies according to Eq. (12).

This method is simple and easy to interpret, but it still lacks a generic relationship between
parameters and response functions. The link of Eq. (12) is derived on a case-by-case basis.

2.4 Frequency Envelope Perturbation
The frequency envelope perturbation method (FEP) is the second of our proposals and is well
explained considering an analogy with a cantilevered beam of length l subjected to a concen-
trated mass m at its free end. The beam static deflection y due to gravity is equal to28,29

EQ-TARGET;temp:intralink-;e015;114;527yðlÞ ¼ mgl3

3EI
; (15)

where E and I are the beam Young’s modulus and moment of inertia, respectively, and g is the
gravitational acceleration.

The first natural frequency of the beam is28,29

EQ-TARGET;temp:intralink-;e016;114;456ω1 ¼
ffiffiffiffiffiffiffiffi
3EI
ml3

r
: (16)

In a modal representation, a change in system parameter p results in a change in ω1. The change
in frequency due to a change in the beam Young’s modulus δω1

δE is equal to

EQ-TARGET;temp:intralink-;e017;114;391

δω1

δE
¼

ffiffiffiffiffiffiffiffiffi
3 EI
ml3

q
2E

: (17)

Rearranging the terms above, we derive

EQ-TARGET;temp:intralink-;e018;114;337

δω1

ω1

¼ 1

2

δE
E

; (18)

which links the standard deviation of the natural frequency to one of Young’s moduli.
Extrapolating this result to a generic opto-mechanical system, we can generate a family of

FRF due to uncertainties by randomizing the frequencies of the modes according to the factor 1/
2. It is worth noting that this factor applies to all parameters that have a square root proportion-
ality to a natural frequency. The cantilevered beam is thus only a meaningful example. An exten-
sion of the application of the FEP beyond Young’s modulus is the mass of a system, which is
typically underestimated in early development. This is further discussed in Sec. 4.3.

The advantages of this method are that it provides a clear link between uncertainty and
dynamic behavior and that it does not require lengthy numerical calculations. To the best of
our knowledge, the FEP is not used in the design of mechanical systems.

3 Case-Study Systems
The four proposed methods are tested on three case studies. The first two cases concern sub-
systems taken from MORFEO,30 a 7 × 8 × 4 m key instrument for the adaptive optics of the ELT
that will use two deformable mirrors to correct for different layers of turbulence in the atmos-
phere (see Fig. 2). The third case is a concept of the optical assembly in the LISA space mission.
LISA will be the first gravitational waves observatory in space, covering the 0.1 mHz to 1 Hz
band with a constellation of three satellites in a triangular formation (see Fig. 3). The three cases
are explained in the following. In all models, we assume a damping ratio, ζ, of 0.75%.
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3.1 MORFEO Calibration Unit Folding Mirror
In Fig. 4, we show the first case study for a total weight of 116.85 kg. This mirror has a clear
aperture of class 1 m. It is responsible for folding the light from the calibration unit of MORFEO
into the instrument. Because we are interested in the FRF between the interface and the mirror,
we include a set of remote points in the model (see Fig. 4). These remote points are attached to all
locations in which an output displacement or input force is desired, such as the center of the
mirror, in this case. A dedicated remote point is connected to the feet of the structure with a
standard RBE2 formulation and is linked to the ground with a virtual very stiff spring (stiffness
k is 1 × 9 Nm−1), which is used to apply a known seismic displacement.

The materials are summarized in Table 1.

3.2 MORFEO Corrective Plate
The corrective plate is shown in Fig. 5. This optical element is an aspherical lens and is the
entrance window of the instrument. Similar to the first case, we define a remote point attached
to the center of the mirror and one that is linked to the ground via a stiff spring. The total weight
of the system is 255.56 kg. This element is the first element in the main optical path of MORFEO.

The materials are summarized in Table 1.
In these subsystems, Young’s modulus of the steel is chosen as the parameter affected by

uncertainty.

Fig. 3 View of the Earth-trailing LISA constellation (not to scale). The three spacecraft are located
on the vertices of the red triangle with a side length of 2.5 × 106 km.

Fig. 2 Rendering of MORFEO instrument. The positions of the two subsystems considered are
reported in the figure.
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3.3 LISA Optical Assembly
In Fig. 6, the third case study is shown. The LISA optical assembly model consists of the fol-
lowing parts:31

• The gravitational reference sensor (GRS), which includes the free-falling 1.928 kg
cubic-shaped test mass. The total weight of the GRS is modeled as a lumped mass
(Fig. 6).

• The optical bench assembly (OBA), which hosts all optical elements combining the signals
of the interferometers and includes an optical bench constructed from a block of zerodur
glass measuring 200 × 212 × 22.5 mm. The total weight of the OBA is modeled as a
lumped mass (Fig. 6).

• The 40-cm off-axis telescope (mechanical length of about 60 cm, a field of view of�7 μrad
out of the plane and �4 μrad in the plane).

• The titanium support structure holding all of the previous systems.

Table 1 Materials composing the two MORFEO subsystems.

Material Young’s modulus (MPa)

3M 2216 2.95

Invar 150

Steel 200

Titanium alloy 96

Zerodur 91

Fused silica 72.5

Fig. 4 Rendering of MORFEO CUFM. The ground consists of all surfaces that are either on the
ground or connected to other MORFEO subsystems, and the center of the mirror is the point where
the FRFs are evaluated.
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Note that the model is only notional and replicates the topology of the LISA optical
assembly but does not replicate the dynamic behavior.

Because we are interested in the FRFs between spacecraft and the mirrors, we define remote
points as in the previous cases: one on the surface that are directly connected to the satellite and
one in the center of the main mirror.

In Table 2, the main materials of the LISA model are summarized.
The methods introduced in Sec. 2 are applied to the LISA optical assembly, varying Young’s

modulus of the titanium alloy.

4 Summary of Numerical Results
We apply the four methods to the abovementioned three case studies, considering a unitary input
displacement to the ground along the x direction, parallel to the mirror’s normal direction. To
account for uncertainty in Young’s modulus, we ran 150 iterations for each method at four differ-
ent uncertainty levels: 2%, 3%, 5%, and 7% of the nominal value. These values are drawn ran-
domly from a Gaussian distribution. As a result, a total of 7200 simulations are performed. The
computational time required to perform a single iteration is on the order of minutes for the DFEM
simulation, whereas it is less than a second for the propagation methods.

For each method, the result is a family of curves that we consider the þ 1σ standard
deviation curve. We take as a benchmark the equivalent þ 1σ curve of the 150 DFEM simu-
lations. Each FEM model has about 5 × 105 nodes. The use of the þ 1σ curve is arbitrary and for
comparison purposes only. Depending on the application, þ 2∕3∕4σ values should be used.

Figure 7 shows the þ1σ standard deviation of the FRFs due to a 2% Young’s modulus
uncertainty level for MORFEO CUFM, MORFEO CP, and LISA optical assembly, respectively.
The FRFs are for the input and outputs along the x direction. Similarly, Fig. 8 shows the þ1σ
standard deviation of the FRFs linked to a 7% uncertainty level. In each figure, four curves are
plotted together: the blue, orange, black, and red lines refer to the FRFs computed with the FP,
MP, FEP, and DFEM methods, respectively. The difference between the curves increases with an
increment in Young’s modulus uncertainty, especially at high frequencies.

Fig. 5 Rendering of MORFEO CP. The ground consists of all surfaces that are either on the
ground or connected to other MORFEO subsystems, and the center of the mirror is the point where
the FRFs are evaluated.
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To properly assess the results of the proposed methods, we consider two quantitative metrics,
testing different aspects of the FRFs being compared:32 the root mean square error (RMSE) to
measure the differences between any two curves (i.e., the accuracy of the methods) and the
Pearson correlation coefficient to measure the correlation between any two curves.

Fig. 6 Rendering of LISA’s telescope. The interface consists of all surfaces connected to the sat-
ellite, and the center of the telescope is the point where the FRFs are evaluated.

Table 2 Materials composing the LISA optical assembly.

Material Young’s modulus

Titanium alloy 96 MPa

Zerodur 91 MPa
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Fig. 7 Mean FRFs summed to their standard deviations along the x direction, computed at a 2%
uncertainty level. The top left and right charts refer to MORFEO CUFM and MORFEO CP, respec-
tively, and the bottom one refers to the LISA optical assembly. In each plot, four curves are
included: the blue, orange, black, and red lines refer to the FRFs computed with the FP, MP,
FEP, and DFEM methods, respectively.

Fig. 8 Mean FRFs summed to their standard deviations along the x direction, computed at a 7%
uncertainty level. The top left and right charts refer to MORFEO CUFM and MORFEO CP, respec-
tively, and the bottom one refers to the LISA optical assembly. In each plot, four curves are
included: the blue, orange, black, and red lines refer to the FRFs computed with the FP, MP,
FEP, and DFEM methods, respectively.
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4.1 Root Mean Square Errors
The RMSE measures how close two curves are, accounting for biases between them, emphasiz-
ing the contribution of larger differences but not considering systematic or random variations
between the curves.32 Given two series a and b that are being compared, the RMSE is
defined as

EQ-TARGET;temp:intralink-;e019;114;676RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

L
n¼1ðan − bnÞ2

L

r
; (19)

where an and bn are the series values at the n’th sample and L represents the total number of
samples. In general, the lower the RMSE value is, the closer the two curves are.33

As we chose the DFEM method as the benchmark (see Sec. 2.1), we estimate the RMSE
between the DFEM FRF at þ1σ standard deviation and the MP, FP, and FEP methods, respec-
tively, at the same þ 1σ.

Each RMSE value is normalized by the root mean square of the mean FRF computed with
the DFEM method, returning three values labeled rMP, rFP, and rFEP.

The ratios are computed at any uncertainty level and are reported in Tables 3 and 4 for
MORFEO CUFM, Tables 5 and 6 for MORFEO CP, and Tables 7 and 8 for the LISA optical
assembly.

Table 5 Normalized RMSE for MORFEO CP, considering the
FRFs along the input direction.

σE (%) rMP % rFP % rFEP %

2 2.61 3.84 4.80

3 2.36 3.57 4.65

5 5.40 6.85 8.47

7 9.01 9.63 11.39

Table 4 Normalized RMSE for MORFEO CUFM, considering the
FRFs along the normal direction.

σE (%) rMP % rFP % rFEP %

2 2.49 3.20 5.47

3 3.95 4.66 7.04

5 6.44 7.37 10.47

7 9.14 9.86 13.05

Table 3 Normalized RMSE for MORFEO CUFM, considering the
FRFs along the input direction.

σE (%) rMP % rFP % rFEP %

2 2.14 2.72 4.49

3 2.72 3.42 5.82

5 5.53 5.99 9.02

7 9.40 9.29 12.30
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The tables suggest that the MP method provides the best overall accuracy, as expected. The
FEP method, despite being a strong simplification, provides satisfactory results, not significantly
worse than the other methods. These considerations hold true at any uncertainty level and for all
case studies analyzed. The FEP results also meet the purpose of this work, which is to provide a
tool capable of incorporating material uncertainties in the preliminary stages of a system design
while being computationally light and robust. The use of margin factors can translate into RMS
errors that go well beyond a few percent.

4.2 Pearson Correlation Coefficient
The Pearson correlation coefficient10,32,34 measures the linear correlation between two curves,
providing a value of their congruence and capturing the trends of the curves (without accounting
for their closeness). Given two series a and b that are being compared, the Pearson correlation
coefficient ϱ is defined as
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where an and bn are the series values at the nth samples and L represents the total number of
samples. In general, the Pearson coefficient may range in value between one and minus one, with

Table 6 Normalized RMSE for MORFEO CP, considering the
FRFs along the normal direction.

σE (%) rMP % rFP % rFEP %

2 2.05 3.03 6.00

3 2.62 3.72 7.40

5 5.60 6.19 10.79

7 8.72 8.92 13.14

Table 7 Normalized RMSE for the LISA optical assembly, consid-
ering the FRFs along the input direction.

σE (%) rMP % rFP % rFEP %

2 2.07 2.35 6.53

3 3.21 4.19 8.74

5 3.54 4.24 11.03

7 6.25 6.99 13.79

Table 8 Normalized RMSE for the LISA optical assembly, consid-
ering the FRFs along the normal direction.

σE (%) rMP % rFP % rFEP %

2 1.97 5.52 11.41

3 3.21 8.07 15.21

5 5.62 12.37 20.28

7 10.26 17.19 24.38
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1 being the ideal value.33 Similarly to what we did for the RMSE, we estimate and compare ϱ for
the 1σ standard deviation level of the DFEM (benchmark), MP, FP, and FEP methods.

The Pearson coefficients are computed at all uncertainty levels considered and are shown in
Tables 9 and 10 for MORFEO CUFM, Tables 11 and 12 for MORFEO CP, and Tables 13 and 14
for the LISA optical assembly.

Similar to the RMSE conclusions, the tables suggest that the MP method provides the best
approximation of the random FRFs due to uncertainty. Despite significant simplifications, the
FEP method provides good results.

Table 12 Pearson coefficient for MORFEO CP for input-output
along orthogonal directions.

σE (%) ϱMP % ϱFP % ϱFEP %

2 99.98 99.94 99.80

3 99.96 99.92 99.69

5 99.80 99.76 99.29

7 99.50 99.48 98.88

Table 9 Pearson coefficient for MORFEO CUFM for input-output
along parallel directions.

σE (%) ϱMP % ϱFP % ϱFEP %

2 99.97 99.96 99.91

3 99.96 99.94 99.82

5 99.83 99.80 99.56

7 99.50 99.51 99.14

Table 10 Pearson coefficient for MORFEO CUFM for input-output
along orthogonal directions.

σE (%) ϱMP % ϱFP % ϱFEP %

2 99.97 99.94 99.85

3 99.91 99.88 99.74

5 99.76 99.68 99.39

7 99.50 99.41 99.01

Table 11 Pearson coefficient for MORFEO CP for input-output
along parallel directions.

σE (%) ϱMP % ϱFP % ϱFEP %

2 99.96 99.92 99.89

3 99.97 99.93 99.89

5 99.83 99.74 99.61

7 99.53 99.47 99.27
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Given the statistical nature of the metric formulation, the Pearson correlation coefficient is
checked with a test of hypothesis, assessing also for its significance.33–36 We associate the null
hypothesisH0 with the case in which there is no correlation between the curves being compared.
The two-sided test statistic tm of the mth Pearson coefficient is

EQ-TARGET;temp:intralink-;e021;117;405tm ¼ ϱm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L − 2

1 − ϱ2m

s
; (21)

where ϱm is the Pearson coefficient being tested for its significance.
With a significance level α, if the absolute value of the statistic tm is greater than the cor-

responding two-sided t-student’s distribution value t1−α
2
;ν (where ν is the number of DoF and is

equal to L − 2), there is evidence to support that there is a statistically significant correlation
between the FRFs being compared. Considering α equal to 1%, the H0 hypothesis is never
accepted, at any uncertainty level and for all case studies, supporting the claim that there is
a statistically significant linear correlation between the FRFs being compared.

4.3 Discussion of the FEP Method Performance
Despite the simplifying hypothesis, the FEP method gives results that are valuable and sta-
tistically significant. The reasons for these performances can be traced to the modes with higher
effective masses.

The effective mass measures the amount of mass moving along each direction for each
mode; this is important for realistic models in which the DoF could be many, and not every
mode participates at the same level to the deformation of the structure.

The first and second columns of Table 15 show the maximum effective mass along any
direction of the first ten modes of MORFEO CP (where θ, η, and ϕ identify the rotations around
x, y, and z, respectively), as an example. The third column of Table 15 represents the standard
deviation of the frequency of each mode normalized on the frequency itself as a function of the
imposed uncertainties on Young’s modulus.

The table shows that factor 1/2 applies well to all modes with a high effective mass. The
same consideration also holds true for the other systems analyzed. The table suggests that using
the FEP method to predict the system response is valuable in the early design of an opto-
mechanical system, particularly in providing a straightforward link between Young’s modulus
and changes in eigenfrequencies.

Table 13 Pearson coefficient for the LISA optical assembly for
input-output along parallel directions.

σE (%) ϱMP % ϱFP % ϱFEP %

2 99.98 99.97 99.78

3 99.94 99.88 99.58

5 99.93 99.89 99.31

7 99.76 99.71 98.89

Table 14 Pearson coefficient for the LISA optical assembly for
input-output along orthogonal directions.

σE (%) ϱMP % ϱFP % ϱFEP %

2 99.98 99.80 99.29

3 99.93 99.58 98.63

5 99.79 98.98 97.34

7 99.27 97.96 95.85
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Finally, we test the FEP method with a different uncertain parameter. Typically, the mass of a
system is underestimated by 10% to 20% in the first phases of development. The FEP method can
also account for this. In Fig. 9, we show the nominal FRF of MORFEO CUFM (dashed blue
curve) and the same FRF when the mass is increased uniformly by 15% (orange curve). The
curve generated by the FEP with a −7.5% frequency (black curve) is a good approximation
of the modified FRF. Also in this case, the designer can generate a family of curves and use
an ensemble FRF for robustness of performance assessments.

5 Conclusions
The dynamics of opto-mechanical systems play a crucial role in ensuring their performance,
especially in noisy environments. The natural uncertainty of the physical parameters can be
a high risk in the early design phase. Typically, during the initial stages of an opto-mechanical
system design, nominal material properties are considered. This approach, however, leads to a
lack of robustness and possibly to extensive redesigns following initial testing. Conversely, inte-
grating potential deviations immediately into the analysis proves to be a cumbersome process,
often hampered in large projects by issues related to confidentiality and software compatibility.

With a focus on opto-mechanical systems, we propose the frequency envelope propagation
method (FEP) that gives a general link from the uncertainty on a parameter to the change in the

Table 15 Standard deviations of the frequency of each mode normalized on the frequency itself
as a function of the imposed uncertainty on Young’s modulus for MORFEO CP. The standard
deviations come from the Monte Carlo simulations.

Mode

Effective mass (kg) σf (%)

x y z θ η ϕ σE ¼ 2% σE ¼ 3% σE ¼ 5% σE ¼ 7%

1 0.1 1.9 1.1 94.9 0.6 2.3 1.0 1.5 2.5 3.5

2 0.0 93.6 3.5 1.7 1.7 102.9 1.0 1.5 2.4 3.4

3 70.1 1.4 127.9 0.9 44.5 1.4 1.0 1.4 2.4 3.4

4 118.0 1.1 27.1 0.3 25.9 0.8 0.9 1.4 2.4 3.3

5 14.0 1.0 44.0 0.0 0.0 0.0 0.8 1.2 2.0 2.9

6 0.5 72.2 1.3 0.0 0.0 0.2 0.8 1.2 2.0 2.8

7 0.1 46.8 0.0 0.0 0.0 0.3 0.8 1.2 1.9 2.7

8 11.8 0.3 0.2 0.0 0.1 0.0 0.8 1.2 2.0 2.9

9 4.6 0.0 9.6 0.0 0.1 0.0 0.7 1.1 1.8 2.5

10 0.2 0.9 0.1 0.0 0.0 0.0 0.8 1.2 2.0 2.9

Fig. 9 FRFs along the x direction for MORFEO CUFM. Three curves are included: the blue, black,
and orange lines refer to the FRFs computed in the nominal condition, with a 15% mass increment
and with the FEP method, respectively.
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important eigenfrequencies. The FEP can also be used with models in the modal space, where the
dependency on physical parameters is partially lost.

The FEP is tested and validated on three opto-mechanical designs at different uncertainty
levels via a comparison with other methods, such as the finite element Monte Carlo simulation
(DFEM) and the linear modal perturbation (MP). We also propose a modification to the MP,
the frequency propagation method (FP), in which the effect of a parameter change on the eigen-
frequencies is linearized neglecting the change in modal shapes.

We conclude that the FEP and FP methods have performances comparable to more exact
methods but with a computationally lighter burden. In addition, the FEP gives successfully a
straightforward link between a parameter uncertainty and the resulting uncertainty on the eigen-
frequencies. This link facilitates the generation of a robust family of FRFs. The FEP method
provides a robust and validated tool useful especially in the preliminary stages of a system
design, reducing the risk of lengthy iterations. This is important particularly in devices relying
on precise optical path lengths or that have tight constraints for modal decoupling.

The research presented here is also an overview of the basics of techniques that account
for material parameter uncertainty in the early design phase of large-scale projects.

The future developments of this work include assessing the methods against real measure-
ments on an array of nominally equal systems and extending the technique to uncertainties
involving more parameters.

Code and Data Availability
Data sharing is not applicable to this article as no new data were created or analyzed.
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