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Abstract

Significance: The water and lipid content of normal breast tissue showed mammary gland char-
acteristics with less influence from the chest wall using six-wavelength time-domain diffuse
optical spectroscopy (TD-DOS) in a reflectance geometry.

Aim: To determine the depth sensitivity of a six-wavelength TD-DOS system and evaluate
whether the optical parameters in normal breast tissue can distinguish dense breasts from non-
dense breasts.

Approach: Measurements were performed in normal breast tissue of 37 breast cancer patients.
We employed a six-wavelength TD-DOS system to measure the water and lipid content in addi-
tion to the hemoglobin concentration. The breast density in mammography and optical param-
eters were then compared.

Results: The depth sensitivity of the system for water and lipid content was estimated to be
∼15 mm. Our findings suggest that the influence of the chest wall on the water content is weaker
than that on the total hemoglobin concentration. In data with evaluation conditions, the water
content was significantly higher (p < 0.001) and the lipid content was significantly lower
(p < 0.001) in dense breast tissue. The water and lipid content exhibited a high sensitivity and
specificity to distinguish dense from non-dense breasts in receiver-operating-characteristic curve
analysis.

Conclusions: With less influence from the chest wall, the water and lipid content of normal
breast tissue measured by a reflectance six-wavelength TD-DOS system, together with ultra-
sonography, can be applied to distinguish dense from non-dense breasts.
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1 Introduction

Diffuse optical spectroscopy (DOS) is an emerging modality being researched for the exami-
nation of breast tissue and diagnosis of breast cancer.1–4 DOS enables quantitative measurements
of oxygenated and deoxygenated hemoglobin concentrations, which are directly related to tumor
angiogenesis.5
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Measurements of water and lipid content of breast cancer can provide important information
about the characteristics of a tumor. Chung et al.6 reported that high water content in a tumor
indicates edema and increased cellularity. Cerussi et al. reported that cancerous breast lesions
contain more water but fewer lipids than normal breast tissue.7 For quantitative measurements of
water and lipid content in addition to hemoglobin concentration measurement using a conven-
tional device (TRS-20SH, Hamamatsu Photonics K.K., Hamamatsu, Japan), we previously
developed a six-wavelength time-domain DOS (TD-DOS) system with three additional wave-
lengths to measure absorption specific to water and lipids (TRS-21-6W, Hamamatsu Photonics
K.K.).8 We previously reported the possibility of combining TD-DOS with ultrasonography
(US) by performing reflectance measurements with a three-wavelength TD-DOS system capable
of determining the tissue concentration of oxyhemoglobin (O2Hb), deoxyhemoglobin (HHb),
total hemoglobin (tHb), and tissue oxygen saturation.9–12 We examined the relationships between
these parameters and structural information for breast tissue. As a result, we found that tHb can
be used as a biomarker to evaluate breast cancer, although the effect of the chest wall must be
considered.9,10 Calculations in the TD-DOS measurements were conducted under the
assumption of homogeneity in the measurement area; however, normal breast tissue actually
has a layered structure comprising skin, lipids, mammary gland, and chest wall. When evaluating
breast cancer using the device, a mass would be added to this layered structure. In measurements
obtained by the three-wavelength TD-DOS system, there were some cases in which the deepest
chest wall layer displayed a strong influence on the results.9,10 To address these concerns, we
used US in our study and reported the relationship between the measurement data and the breast
structure based on a comparison of US images and optical data. Because six-wavelength TD-
DOS measurements were acquired in a reflectance geometry similar to a three-wavelength sys-
tem, it was necessary to study the effect of each tissue layer on the optical parameters. To aid in
evaluating optical data in breast cancer, it is important to carefully study structural information
for normal breast tissue, which has a simpler layered structure than cancerous breast tissue. It is
also necessary to study the depth sensitivity of water and lipid content for evaluating normal
breast and then breast cancer.

It is valuable to identify dense breasts using near-infrared measurement, which avoids radi-
ation exposure. Breast cancer risk varies by race and country; however, there is a common issue
for women with dense breasts. In mammography (MMG) results, a higher breast density cor-
relates with an increased risk of breast cancer.13–16 Some studies have shown a direct correlation
between the breast imaging reporting and data system (BI-RADS) classification for MMG breast
density and water content.17 Altoe et al.18 reported that the water percentage of normal breast
tissue correlated significantly with breast density. Asian women tend to have denser breasts than
American women.19 There is a higher risk for overlooking cancer in mammograms of dense
breasts because the breast lesion is covered by surrounding fibroglandular tissue. Prior infor-
mation on patients with dense breasts might prompt the use of additional modalities such as
magnetic resonance imaging (MRI) and US, depending on the patient’s family history, genetic
testing, and other risks of breast cancer. Although no relationship has been found between a
mortality reduction in breast cancer and the use of US and/or MRI in addition to MMG, US
and MRI contribute to early detection of breast cancer.20–24 Informing patients about their dense
breasts is also considered to be an effective way to promote breast cancer awareness, which
includes self-examination and voluntary breast screening.

According to a previous study, there was a correlation between some physical parameters
obtained by near-infrared-transmittance measurements and breast density in MMG.25 In this
study, we compared optical data measured in the reflectance geometry with MMG breast density
to determine whether optical data can distinguish dense and non-dense breasts.

2 Materials and Methods

2.1 Subjects

This study included 48 patients who were diagnosed with breast cancer from September
2017 to November 2018. Patients who received neoadjuvant chemotherapy (n ¼ 8) or hormone
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therapy (n ¼ 3) were excluded, leaving 37 patients. All were Asian women with an age range of
25–88 years, median age of 65 years, and median body mass index of 22.8 (range: 16.4–32.4).
Nine patients were premenopausal and 28 were postmenopausal. In this study, only data for
normal-side breasts were evaluated. The study protocol was approved by the Ethical Review
Committee of the Hamamatsu University School of Medicine, and written informed consent
was obtained from all patients.

2.2 TD-DOS and US Measurements

The optical properties of breast tissue were measured using a six-wavelength TD-DOS system
(TRS-21-6W, Hamamatsu Photonics K.K., Hamamatsu, Japan). The system was developed
based on a three-wavelength TD-DOS system (TRS-20SH, Hamamatsu Photonics K.K.) used
in our previous studies.9–12

The TRS-21-6W system uses the time-correlated single-photon counting (TCSPC) method to
acquire the time response profile of pulsed laser light penetrating the target tissue. The system
includes two light source units, each containing three laser diodes (762, 802, and 838 nm for the
first unit; 908, 936, and 976 nm for the second unit) that emit a light pulse with a full width at half
maximum of ~100 to ~200 ps at a repetition rate of 5 MHz (custom-designed, Hamamatsu
Photonics K.K.). The photodetector units consist of two photomultiplier tubes (GaAs and
InGaAs, Hamamatsu Photonics K.K.), constant fraction discriminators, time-to-amplitude
converters, analog-to-digital converters, and histogram memories. The six pulsed lasers are inte-
grated into one source fiber with a diameter of 1 mm and a numerical aperture of 0.29 (Sumita
Optical Glass, Inc., Saitama, Japan). The irradiated light from the source fiber is collected by a
detection fiber bundle with a diameter of 3 mm and a numerical aperture of 0.29 (Sumita Optical
Glass, Inc.). The specifications and analysis method of the improved system are described in
detail in Ref. 8. The system uses the TCSPC method to acquire the temporal response profiles of
tissue from optical pulse inputs, which enable quantitative analyses of light absorption and
scattering in tissue based on photon diffusion theory.26

The water and lipid content and the concentrations of O2Hb and HHb are calculated from the
absorption coefficients for the six wavelengths. The concentration of tHb is the sum of the O2Hb

and HHb concentrations. As described in our previous study,8 the water and lipid content are the
volume fractions of water and lipids measured by the TRS-21-6W system. Notably, these are
relative values compared with those of pure solutions and not the actual composition ratios of the
tissue.27 The measurement accuracy of the absorption and scattering coefficients and the
adequacy of the water and lipid content were evaluated in Ref. 8.

Breast measurements were carried out in the reflectance geometry with a source–detector
separation of 3 cm. The measurements were performed in supine position and performed simul-
taneously with the TRS-21-6W system and an US system (EUB-7500; Hitachi Medical
Corporation, Tokyo, Japan) using a custom spectroscopic probe in which the resulting optical
path is set orthogonal to the US image. The probe was attached to a linear probe (EUP-L65,
Hitachi Medical Corporation), as shown in Fig. 1(a), and lightly pressed on the breast to measure
the absorption and reduced scattering coefficients at six wavelengths while simultaneously
obtaining US images. The light from the source fiber is scattered and absorbed in the medium
before it reaches the detector. The photon path between the source and the detector fiber is con-
sidered to be banana-shaped [Fig. 1(b)].28

2.3 Mammography

MMG results obtained at our current or former hospital on the nearest date to the optical meas-
urement were categorized into four types based on BI-RADS 5th ed.: (a) the breasts are almost
entirely fatty; (b) there are scattered areas of fibroglandular density; (c) the breasts are hetero-
geneously dense, which may obscure small masses; and (d) the breasts are extremely dense.

2.4 Measurement and Evaluation Procedures

Measurements were performed at several locations on the normal-side breast. Our evaluation
was first conducted on data that had a two-layer structure of lipids and the chest wall but
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no mammary gland in the subclavian area or in breast area away from a nipple, as confirmed by
simultaneous US images. Data were obtained for 38 locations from 25 patients, with a maximum
of four locations for each patient.

To evaluate normal breast data, data for 133 locations were included. Measurements were
performed on normal breast tissue at a maximum of six locations for each patient. We excluded
data measured directly on the nipple.

Figure 2 shows US images of normal breast tissue and of tissue in the subclavian area with a
two-layer structure of lipids and the chest wall. The skin-to-mammary gland distance and the
skin-to-chest wall distance were measured at the center of US images. To measure the skin-to-
chest-wall distance, the chest wall was defined as the surface of the major pectoral muscle or
anterior serratus muscle.

A previous study9 showed that the tHb value increased as the skin-to-chest wall distance
decreased, indicating that the chest wall has a strong influence on tHb measurements. To study
the influence of the chest wall on water and lipid content, we examined the relationship between
water and lipid content and the skin-to-chest wall distance for the two-layer structure of a lipid
layer and chest wall using the sigmoid curve-fitting method. We also compared the data with tHb
measurements for the same structure.

The following regression equation was selected for the sigmoid curve based on previous
studies:29,30
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Fig. 2 (a) US image of normal breast tissue and (b) the subclavian area with a two-layer structure
of lipids and the chest wall. The images show the skin (S), lipid layer (L), mammary gland (M), and
chest wall (C).

(a) (b)

Fig. 1 (a) Optical probe attached to an ultrasound (US) probe. (b) Schematic illustration of the
diffusion of light propagating in the breast and positioning of the optical fibers and US probe.
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EQ-TARGET;temp:intralink-;e001;116;735f ¼ y0 þ a∕ð1þ expð−ðx − x0Þ∕bÞÞ; (1)

where x is the skin-to-chest wall distance (mm); f is the tHb concentration (μM), water content
(%), or lipid content (%); and y0, x0, a, and b are constants determined for tHb, water content,
and lipid content, respectively. The y0 value corresponds to the fitted curve’s plateau in tHb or
water content, which should represent the corresponding content of the superficial lipid layer in a
two-layered structure. The value of y0 þ a indicates the fitted curve’s plateau in lipid content,
which should represent the corresponding content of the superficial lipid layer in two-layered
structure.

Next, we plotted the tHb concentration, water content, and lipid content of normal breast
tissue against the skin-to-chest wall distance and skin-to-mammary gland distance. The tHb con-
centration result was used as a reference. We also applied the sigmoid curve-fitting method to the
tHb concentration, water content, and lipid content.

Two expert radiologists assigned BI-RADS MMG density categories for all 37 patients.
When images were classified into different categories by each radiologist, the final classification
was determined after discussion.

We compared the tHb concentration, water content, and lipid content in normal breast tissue
for each MMG category. To assess the potential to distinguish dense from non-dense breasts
based on optical data, the tHb concentration, water content, and lipid content for all 133 data
points were shown separately with skin-to-chest wall distance in dense and non-dense breasts.
Boxplots were used to display the water and lipid content for locations at which the skin-to-chest
wall distance was large enough to avoid the effect of the chest wall and the skin-to-mammary
gland distance was small enough to represent the mammary gland. The optical data were then
analyzed using receiver-operating-characteristic (ROC) curve analysis to determine their poten-
tial to distinguish dense from non-dense breasts.

2.5 Statistical Analysis

Statistical analyses were performed using Microsoft Excel 2016 (Microsoft Corporation,
Redmond, Washington), StatFlex version 6.0 (Artech Co., Ltd, Osaka, Japan), and SigmaPlot
version 14.0 (Systat Software, Inc., San Jose, California). A sigmoid curve (1) was applied for
curve fitting of the tHb, water content, and lipid content in the two-layer structure and in normal
breast tissue.

The tHb concentration and water and lipid content in normal breast tissue in each MMG
category were compared using nonparametric Mann–Whitney U tests with Bonferroni correc-
tion. The skin-to-mammary gland distances of dense and non-dense breasts were compared
using nonparametric Mann–Whitney U tests. The water and lipid content of dense and non-dense
breasts were compared using nonparametric Mann–Whitney U tests. Differences with p < 0.05

were considered significant.
To identify an optimal threshold for discriminating dense from non-dense breasts, ROC curve

analysis of optical data was performed by incrementally increasing the cutoff values. The area
under the curve (AUC), sensitivity, specificity, positive predictive value (PPV), negative predic-
tive value (NPV), and accuracy were analyzed.

3 Results

3.1 tHb Concentration, Water Content, and Lipid Content in the Two-Layer
Structure of Lipids and the Chest Wall

The tHb concentration, water content, and lipid content in the two-layer structure comprising a
lipid layer and the chest wall are shown in Fig. 3. The tHb concentration increased as the
skin-to-chest wall distance decreased from ∼20 mm. The water content increased and the lipid
content decreased as the distance decreased from ∼15 mm. The value of y0 in the sigmoid curve
(1) was 11.1 for tHb concentration, 7.9 for water content, and the value of y0 þ a was 69
for lipid.
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3.2 tHb Concentration, Water Content, and Lipid Content in Normal Breast
Tissue

The tHb concentration, water content, and lipid content in normal breast tissue for all 133 data in
37 patients are shown in Fig. 4. In the figure, the relationship between each parameter and the
skin-to-chest wall distance is displayed. Both tHb concentration and water content increased as
the skin-to-chest wall distance decreased, whereas the lipid content decreased as the skin-to-
chest wall distance decreased. The multiple correlation coefficients (R values) for the fitted
curves were 0.938 for tHb, 0.774 for water content, and 0.838 for lipid content. The coefficients
of variation were calculated to compare the dispersion of tHb concentration and water content in
normal breasts for data with a skin-to-chest wall distance of 20 mm or more, assuming that the

(a) (b)

(c)

Fig. 4 tHb concentration, water content, and lipid content of normal breast tissue versus skin-to-
chest wall distance. Experimental data (n ¼ 133) and fitted curves are shown for (a) tHb concen-
tration (R ¼ 0.938), (b) water content (R ¼ 0.774), and (c) lipid content (R ¼ 0.838).

Fig. 3 tHb concentration, water content, and lipid content in the two-layer structure versus skin-to-
chest wall distance. Experimental data (n ¼ 38) and fitted curves are shown for tHb concentration
(R ¼ 0.978), water content (R ¼ 0.965), and lipid content (R ¼ 0.931).
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chest wall has little effect on each parameter. The coefficients of variation were 24.3% for tHb
concentration and 41.4% for the water content.

Figure 5 shows the relationship between tHb concentration, water content, and lipid content
and the skin-to-mammary gland distance in normal breast tissue for all 133 data from 37 patients.
Both the tHb and water content increased as the skin-to-mammary gland distance decreased.
Lipid content decreased as the skin-to-mammary gland distance decreased. For skin-to-
mammary gland distances <10 mm, the dispersion of tHb values was large, whereas the values
of water and lipid content lie near the fitted curves, showing a distribution similar to that of the
two-layer structure of a lipid layer and chest wall. The values of R for the fitted curves were
0.795 for tHb, 0.949 for water content, and 0.923 for lipid content.

3.3 tHb Concentration, Water Content, and Lipid Content in Normal Breast
Tissue Based on Breast Density

The breast density in MMG was classified as “almost entirely fat” (category a) in three patients,
having “scattered fibroglandular densities” (category b) in 20 patients, “heterogeneously dense”
(category c) in 11 patients, and “extremely dense” (category d) in three patients. Breast tissue in
categories c and d was defined as dense, whereas that in the other categories was defined as
non-dense.

Boxplots of the tHb concentration, water content, and lipid content in normal breast tissue for
each category are shown in Fig. 6. There were 14 data in category a, 69 in category b, 36 in
category c, and 14 in category d. The tHb concentration in category a was significantly lower
than that in category d (p ¼ 0.017). Although there was no significant difference between the
water content in categories c and d, significant differences in water content were found for all
other pairwise group comparisons (p < 0.01). The lipid content in category b was significantly
higher than that in category c (p < 0.01) and category d (p ¼ 0.027). Figure 7 shows the

(a) (b)

(c)

Fig. 5 tHb concentration, water content, and lipid content of normal breast tissue versus skin-to-
mammary gland distance. Experimental data (n ¼ 133) and fitted curves are shown for (a) tHb
concentration (R ¼ 0.795), (b) water content (R ¼ 0.949), and (c) lipid content (R ¼ 0.923).

Wada et al.: Water and lipid content of breast tissue measured by six-wavelength time-domain diffuse. . .

Journal of Biomedical Optics 105002-7 October 2022 • Vol. 27(10)



relationship between the skin-to-chest wall distance and tHb concentration, water content, and
lipid content of normal breast tissue in non-dense (n ¼ 83) and dense breasts (n ¼ 50). As the
skin-to-chest wall distance decreased, the tHb concentration and water content increased for both
non-dense and dense breasts. There was a tendency for the water content to be higher in dense
breasts than in non-dense breasts for a given skin-to-chest wall distance. The lipid content
decreased as the skin-to-chest wall distance decreased. Moreover, there was a tendency for the
lipid content to be lower in dense breasts than in non-dense breasts for a given skin-to-chest wall
distance. The skin-to-mammary gland distance was shorter in dense breasts than in non-dense
breasts (p < 0.001), with a median distance of 10 mm [interquartile range (IQR): 7–14, n ¼ 50]
in dense breasts and 14 mm (IQR: 11–18, n ¼ 83) in non-dense breasts.

According to Fig. 3, the depth sensitivity for water and lipid content was ∼15 mm. Figure 8
shows boxplots of water and lipid content for non-dense (n ¼ 52) and dense (n ¼ 31) breasts
with a skin-to-chest wall distance of 15 mm or more and a skin-to-mammary gland distance of
15 mm or less, assuming that these data reflect the content of breast tissue with a mammary gland
and are minimally influenced by the chest wall. The water content in normal breast tissue was
higher in dense than in non-dense breasts (p < 0.001), with a median content of 21.0% (IQR:
16.2–27.1, n ¼ 31) in dense breasts and 11.9% (IQR: 10.5–13.4, n ¼ 52) in non-dense breasts.
The lipid content in normal breast tissue was lower in dense breasts than in non-dense breasts
(p < 0.001), with a median content of 63.5% (IQR: 58.2–67.6, n ¼ 31) in dense breasts and
72.9% (IQR: 70.1–74.3, n ¼ 52) in non-dense breasts.

Fig. 6 Boxplots of tHb concentration, water content, and lipid content for each mammography
category. The median value of tHb was 14.9 μM in category a (almost entirely fat), 16.8 μM in
category b (scattered fibroglandular densities), 18.3 μM in category c (heterogeneously dense),
and 23.3μM in category d (extremely dense). The tHb concentration in category a was significantly
lower than that in d (p ¼ 0.017). The median water content was 7.9% in category a, 11.9% in
category b, 21.8% in category c, and 19.5% in category d. Although there was no significant differ-
ence between the water content in categories c and d, significant differences were found for all
other pairwise group comparisons (p < 0.01). The median values of lipid content were 70.9% in
category a, 72.9% in category b, 63.8% in category c, and 65.3% in category d. The lipid content in
category b was significantly higher than that in category c (p < 0.01) and category d (p ¼ 0.027).
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3.5 ROC Analysis for Distinguishing Dense from Non-Dense Breasts

ROC curve analysis was used to evaluate the possibility of distinguishing dense from non-dense
breasts based on optical parameters. Figure 9 shows the ROC curve for normal breast tissue for
83 data (31 dense and 52 non-dense breasts) with a skin-to-chest wall distance of 15 mm or more
and a skin-to-mammary gland distance of 15 mm or less, assuming that these data reflect the

(a) (b)

(c)

Fig. 7 (a) tHb concentration, (b) water content, and (c) lipid content versus skin-to-chest wall dis-
tance in normal breast tissue for non-dense (n ¼ 83) and dense (n ¼ 50) breasts.

Fig. 8 Boxplots of (a) water content and (b) lipid content of non-dense (n ¼ 52) and dense
(n ¼ 31) breasts with a skin-to-chest wall distance of 15 mm or more and a skin-to-mammary gland
distance of 15 mm or less, assuming that these data reflect the content of breast tissue with a
mammary gland and are minimally influenced by the chest wall. The water content of normal
breast tissue was higher in dense breasts than in non-dense breasts (p < 0.001). The lipid content
of normal breast tissue was lower in dense breasts than in non-dense breasts (p < 0.001).
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content of breast tissue with a mammary gland and are minimally influenced by the chest wall.
The AUC was 0.91 for both water content and lipid content. With an optimal cutoff of 14.0% for
water content, the results were: diagnostic accuracy, 83.1%; sensitivity, 83.9%; specificity,
82.7%; PPV, 74.3%; and NPV, 89.6%. With an optimal cutoff of 69.1% for lipid content, the
results were: diagnostic accuracy, 80.7 %; sensitivity, 80.6%; specificity, 80.8%; PPV, 71.4%;
and NPV, 87.5%.

4 Discussion

In previous studies, we conducted hemoglobin measurements in breast cancer patients using a
three-wavelength TD-DOS system and reported the influence of the chest wall muscles.9,10 In
this study, we performed measurements with a six-wavelength TD-DOS system to evaluate water
and lipid content.

As shown in Fig. 3, the tHb concentration and water content increased and lipid content
decreased as the skin-to-chest wall distance decreased for a two-layer structure of a lipid layer
and chest wall. The results suggest that the chest wall contains high amounts of tHb and water,
with a lower lipid content. A high concentration of tHb in the chest wall could be caused by
myoglobin, which is measured as the hemoglobin concentration with the TD-DOS system.9 The
results also show that the lipid layer contains some water and hemoglobin. In the evaluation of
tHb concentration, water content, and lipid content in the two-layer structure of a lipid layer and
chest wall, the depth sensitivity of the TRS-21-6W system with a source–detector separation of
3 cm was revealed based on the relationships between the parameters and the skin-to-chest wall
distance. Figure 3 shows that the water and lipid content reached a plateau at a skin-to-chest wall
distance of ∼15 mm, which is slightly smaller than the value obtained for tHb (∼20 mm).

As shown in Fig. 4, the results for all 133 data showed the same trends for the tHb concen-
tration, water content, and lipid content seen for the two-layer structure. From the fitted curves,
the R value for the tHb concentration was higher than that for the water content. The coefficient
of variation also indicated that the water content had a larger variation than tHb concentration
when the skin-to-chest wall distance exceeded 20 mm (i.e., for distances at which the chest wall
is thought to have little effect on both water content and tHb concentration). The R value for tHb
concentration in two-layer structure and normal breast (three-layer structure with fat, mammary
gland, and chest wall) were 0.978 and 0.938, respectively. Similarly, the R values were 0.965 and

Fig. 9 ROC curves for 83 data corresponding to a skin-to-chest wall distance of 15 mm or more
and a skin-to-mammary gland distance of 15 mm or less. The AUC was 0.91 for water content and
0.91 for lipid content.
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0.774 for water content and 0.931 and 0.838 for lipid content. Because the R values for water and
lipid content decreased in the three-layer structure, it would be suggested that the mammary
gland had a large influence on water and lipid content. The mammary gland, which lies above
the chest wall, should cause larger individual differences in the water and lipid content than in the
tHb concentration.

In contrast, as shown in Fig. 5, the R value for the tHb concentration was smaller than that for
water content. The tHb values showed greater variation than the water content when the skin-to-
mammary gland distance was smaller than 10 mm (Fig. 5). This result suggests that the influence
of the chest wall on the measured tHb varies. The distribution of water and lipid content against
the skin-to-mammary gland distance resembles that of a two-layer structure, suggesting that the
influence of the chest wall on the measured water and lipid content is small.

In Fig. 6, the tHb concentrations in each MMG category were significantly different only
between the fatty and extremely dense groups. The water content was significantly different
between most MMG categories, and the lipid content was significantly different between some
MMG categories of breast density. In Fig. 7, the tHb concentration was plotted against the skin-
to-chest wall distance in dense and non-dense breasts separately, with the value in dense breasts
looks slightly higher than that in non-dense breasts. The chest wall appears to have a strong
influence on tHb, but there was a small difference between the tHb concentrations in non-dense
and dense breasts. In contrast, there were differences between non-dense and dense breasts for
the water or lipid content. The water content was higher for dense than non-dense breasts,
whereas the lipid content was lower in dense than in non-dense breasts when the content of
breast tissue reflecting mammary gland and with little effect from the chest wall.

Finally, we analyzed the ROC curve for water and lipid content to evaluate the potential of the
TRS-21-6W system to discriminate dense from non-dense breasts. Because the depth sensitivity
of the system with a source–detector separation of 3 cm was ~15 mm for the water and lipid
content of the breast, it is assumed that the result reflected only the influence of the lipid layer
when an area far from the mammary gland was measured. With this assumption, we analyzed the
data corresponding to a skin-to-chest wall distance of 15 mm or more and a skin-to-mammary
gland distance of 15 mm or less, which reflect the water and lipid content of the mammary gland
with little effect from the chest wall. The result shows that dense and non-dense breasts could be
distinguished with high sensitivity and specificity based on their water and lipid content. There
was a tendency for the skin-to-mammary gland distance to be smaller in dense breasts than in
non-dense breasts, and this difference may have influenced the results of the ROC analysis. The
device showed the potential to distinguish dense from non-dense breasts.

The depth sensitivity for measuring water and lipid content was approximately 15 mm with a
source–detector separation of 3 cm, which is important when measuring these values in breast
cancers using the TRS-21-6W system.

There is an issue to address with this study: data for skin-to-mammary gland distances close
to 15 mm are thought to almost only reflect the influence of the lipid layer. The distribution of the
mammary gland is uneven and sometimes asymmetrical.31 The assessment of data at distances
far enough to have a weaker effect from the chest wall and distances small enough to capture the
effect of the mammary gland might result in a better understanding of the mammary gland struc-
ture. It is necessary to assess the appropriate assumptions for measuring normal breast tissue.

To measure the water and lipid content with improved depth sensitivity, the source–detector
separation should be increased. We are currently evaluating data obtained using different source–
detector separations.

5 Conclusion

In this study, we performed measurements using a six-wavelength TD-DOS system and evalu-
ated the water and lipid content in conjunction with the structural information of breast tissue
provided by US. We also demonstrated the possibility of distinguishing dense from non-dense
breasts by reflectance measurements with this six-wavelength TD-DOS system. Since the water
and lipid content had smaller influence of the chest wall than the tHb concentration, the system
should be suitable for evaluating mammary glands.
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