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1 Introduction

Monte Carlo (MC) methods to provide solutions for the radiative transport equation (RTE) origi-
nated at Los Alamos National Lab in 1946. At that time, the intent was to solve nuclear fission
problems. The initial code base that was developed has subsequently evolved into the Monte
Carlo N-Particle Transport (MCNP1) code.2 Since then, MC simulations of radiative transport
have been used to solve problems in biomedical optics. The first paper documenting the use of
MC to study light propagation in tissue was published by Wilson and Adam,3 and this was
followed by Prahl et al.4 which served as a precursor to the seminal 1995 paper by Wang et al.5

that introduced the open-source MC Command Line application (MCML) code commemorated
in this special issue.

Our development of the MCCL began with C code developed initially by Andy Dunn and
Derek Smithies at the Beckman Laser Institute (BLI) at the University of California, Irvine, in
1998. Carole Hayakawa, under the direction of Jerry Spanier, advanced this code base through
the development of perturbation and differential MC methods in support of her doctoral thesis.6,7

In 2008, the Virtual Photonics Technology Core (VPTC) was formed within the BLI National
Institutes of Health (NIH) P41 Biomedical Technology Research Center (Laser Institute
Laser Microbeam and Medical Program) under the leadership of Jerry Spanier and Vasan
Venugopalan. The formation of the VPTC motivated the systematic organization of the software
with the intent of open-source distribution to the Biomedical Optics community. This effort
coincided with a NIH K25 award to Hayakawa to further develop a “Virtual Tissue Simulator
for Biomedical Optics.” Soon after David Cuccia saw multiple opportunities to restructure
the code to enable: (a) an object-oriented and extensible software platform and (b) organized
versioning that would provide a stable code base for students/researchers who may require
specialized code modifications for their work. Cuccia and Hayakawa ported the code to C# and
the first version of the MCCL was uploaded to CodePlex in 2010. We migrated the code to
GitHub (https://github.com/VirtualPhotonics/Vts.MonteCarlo/wiki) in 2017 where it has been
maintained ever since. In 2014, Ranasinghesagara added a diverse set of optical source
definitions suited for a variety of applications (see Secs. 2.7 and 3.3 for more information).
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A unique aspect of our open-source code project is our commitment to have professional man-
agement of our code and web development, a critical role that Lisa Malenfant has provided since
2010. This ensures that our code has guidelines, naming conventions, documentation, and a web
presence that is informative and easy to navigate. From 2013 to 2018, the VPTC led the
development and delivery of annual Short Courses in Computational Biophotonics (https://
education.virtualphotonics.org). In these courses, MCCL played an integral role in the lab exer-
cises to demonstrate the capabilities and characteristics of MC simulations to solve the RTE and
illustrate important conceptual aspects of light transport within biological tissues.

We developed the MCCL to provide the following capabilities: (a) software extensibility to
allow easy incorporation of additional source, tissue, and detector options, (b) various optical
sources and detectors as well as commonly analyzed tissue structures used in the biomedical
optics community, and (c) simulations using foundational MC methods, e.g., those employed
by MCNP, and advanced methods, such as perturbation MC. Our objective in this paper is to
describe our open-source MC simulation engine, its modular architecture, features, operation,
and the ample resources we have provided to support user installation and usage.

2 Important Features of MCCL

MCCL is packaged with the Monte Carlo Post Processor (MCPP) and is available for Windows,
MacOS, and Linux by downloading the software from the Virtual Photonics GitHub website
(https://github.com/VirtualPhotonics). Directions for downloading a zip file with executables
and for cloning and building it from source code are provided on the “wiki” pages of
the MCCL GitHub website (https://github.com/VirtualPhotonics/Vts.MonteCarlo/wiki). For
downloading a zip file, there are separate instructions for Linux (https://github.com/Virtual
Photonics/Vts.MonteCarlo/wiki/MCCL-Getting-Started-on-Linux), Mac (https://github.com/
VirtualPhotonics/Vts.MonteCarlo/wiki/MCCL-Getting-Started-on-Mac), and Windows (https://
github.com/VirtualPhotonics/Vts.MonteCarlo/wiki/MCCL-Getting-Started-on-Windows). All
operating systems require .NET 5.0 consistent with the respective system.

The code is written in C#, an object-oriented, strongly typed language that allows the soft-
ware to be easily extensible. Moreover, C# is a component-oriented language which means that
the code can be written in the form of components that can be interchanged. In particular, our
MCCL design permits the use of any combination of sources, tissues, detectors, and MC estima-
tors within a single simulation. Both MCCL and MCPP have been adapted for .NET Core, and
therefore cross-platform applications, which allows a single source to generate executables that
run on Windows, Mac, and Linux. In addition, MCCL can be executed across multiple CPUs for
improved computational efficiency.

2.1 Open-Source

MCCL and MCPP are both open-source and maintained in a software repository that provides
version control for releases including detailed release notes. The software generated by the
Virtual Photonics Technology Initiative (VPTI; https://virtualphotonics.org) is hosted on
GitHub (https://github.com/VirtualPhotonics), a website that hosts open-source software. On
GitHub, we provide wiki pages that document the software, an issues section where users can
communicate with the development team regarding issues with the software, and instructions on
how to pull the source code and download the latest executables. Subpages provide information
regarding how to edit input files, examples of command line directives, capabilities, and imple-
mentation, detail on source definitions, instruction on operating the post-processor and executing
inverse solutions, and a frequently asked questions page. We also list all references used in
the code.

2.2 Software Interfaces

A key advantage of the MCCL and MCPP software architecture is C#’s use of classes and inter-
faces to readily provide extensibility of the software. A software class is a user-defined blueprint
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or prototype from which objects are created and an interface looks, such as a class, but has no
implementation. Interfaces can contain declarations of fields, properties, and methods. These
declarations specify a software contract between the interface and any class that implements
it. The contract specifies that the class will implement the fields, properties, and methods and
their signatures defined in the interface. Once an interface is defined, coding a specific class that
implements the interface is clearly defined to readily provide software extensibility. We have
designed all our source, tissue, and detector classes with interfaces to simplify future additions.
Our most commonly used sources and detectors are listed in tabular form in Sec. 3.3. Moreover,
the use of interfaces provides for easier code maintenance since the interface contract prevents
any future implementations of classes from breaking the code. Some of the interfaces defined for
MCCL and MCPP include: the absorption weighting methods, inputs for optical sources, detec-
tors and tissues, and the resulting class implementations. For example, our TissueInput
interface specifies a TissueType identifier string, an array of tissue Regions, and a method
to create the corresponding tissue, CreateTissue. Any new tissue class added to the software
would implement this interface, and therefore, be required to have code that defines the
TissueType, Regions, and a method CreateTissue. The use of interfaces allows users
to pipeline together a selected source, tissue, and detectors into a simulation requiring little
knowledge of code.

2.3 Multiprocessor Capability

MCCL provides the option to execute simulations in parallel across a specified number of CPUs.
This can be invoked using the option “cpucount=#” in the command line. Usage of the multi-
processor capability requires the selection of a random number seed in each simulation such that
the random number sequences on each CPU or thread are independent, i.e., do not overlap.
When executing the code on a single CPU, we employ the Mersenne Twister algorithm8 which
generates pseudo-random numbers with period 219937. When executing on multiple CPUs, the
code uses a Dynamic Creator Mersenne Twister9 which finds substreams of the original
Mersenne Twister to ensure that the substreams are independent.

2.4 Tissue Heterogeneities

MCCL supports MC simulations in layered tissues to model tissue structures such as skin as well
as the introduction of inclusions, such as ellipsoids, cubes, and cylinders, with different optical
properties to approximate internal structures such as tumors or blood vessels. Our use of ana-
lytical functions to define inclusions was inspired by the Los Alamos National Lab MCNP code.
The usage of analytic functions to define the boundaries of the heterogeneities provides two key
advantages. First, the means to determine whether the photon is inside or outside the hetero-
geneity can be performed through the evaluation of a quadratic function. Second, the curved
surfaces of heterogeneities, such as spheres, ellipsoids, or cylinders are modeled exactly and
avoids the “voxelization” errors that can occur when modeling objects with curved surfaces
that lead to significant errors in computation of reflectance and transmission across interfaces.10

A notable drawback of this approach is that heterogeneous tissues defined by a network of tetra-
hedrons cannot be modeled,11–13 and Digital Imaging and Communications in Medicine images
cannot be currently imported to define the tissue geometry. However, a key objective in devel-
oping MCCL was to develop a modular MC simulation platform that rigorously solves the RTE
to support streamlined investigations for a wide variety of simple model problems and can exam-
ine the impact of different optical sources, detectors, and/or MC estimators on performance and
computational efficiency. MCCL is not intended to serve as a medical imaging tool as there are
other code bases that fill that need.

2.5 Variance and Efficiency

Because MC is a stochastic solution method, the results of all simulations have an associated
uncertainty or variance that quantifies their accuracy. In our design of MCCL, we have priori-
tized direct user access to rigorous metrics for the uncertainty of the simulation output so that
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they can properly interpret MCCL results. The fundamental metric characterizing the uncertainty
of a MC random variable ξ is the variance defined as VarðξÞ ¼ 1

N

P
Nðξ − E½ξ�Þ2, where E½ξ� is

the expected value or mean of ξ. This is equivalent to the second central moment of ξ. The
standard deviation of the random variable σðξÞ is given by the square root of the variance.
Users can generate the standard deviation associated with the tally from each detector by setting
“TallySecondMoment” to “true” in the input file. A rigorous comparative analysis of the
performance of two different MC simulations is provided by a metric called computational effi-
ciency. The computational efficiency Eff½ξ� of ξ is given by 1∕½R2T� where R is the relative error
and T is the computer run time.2 The relative error R½ξ� in the estimate of ξ is given by σ

E½ξ�.

2.6 Absorption Weighting Types

All MC codes require a method to account for optical absorption. MCCL allows the user to
specify the use of Analog, Discrete Absorption Weighting (DAW), or Continuous
Absorption Weighting (CAW).14 The desired weighting method can be selected by setting
“AbsorptionWeightingType” to “Analog,” “Discrete,” or “Continuous.” Each
method has advantages and disadvantages depending on the system under investigation.15 In
the Analog method, the photon retains a weight of 1, however, at each scattering event it can
be absorbed and terminated with probability ðμa∕μtÞ. Intercollision distances are sampled from
the distribution μt expð−μtsÞ where s is the track length between collisions. Using this method
can lead to infrequent tallies at detectors located distally from the source which result in MC
estimates with high variance.2 DAW and CAW are absorption weighting techniques that reduce
the weight of the photon during propagation to account for absorption and disallow termination
of the photon until it exits the system. DAW which is widely used in other MC programs includ-
ing MCML, bases intercollision distances on the distribution μt expð−μtsÞ, where s is the track
length, while CAW bases these distances on μs expð−μssÞ.15 All of these absorption estimators
are unbiased so they provide random variables that converge to the solution of the RTE in the
limit as N (the number of photons launched) goes to infinity.14

Most MC codes in the biomedical community enable the use of DAWand/or CAW, however,
none to our knowledge enable Analog14 processing. In terms of computational efficiency, esti-
mation of ξ using an Analog random walk process can provide higher efficiencies compared to
DAWand CAW due to the simplicity of the computations involved which result in shorter com-
puter run times. However, for a given problem it is difficult to know in advance which estimator
will produce the greatest efficiency.15

2.7 Sources

MCCL provides numerous input options that enable the simulation of both external optical
sources irradiating the tissue surface or interstitial sources that reside within the tissue volume.
The input options provide the flexibility needed to accurately model physical optical sources.
MCCL allows the user to define basic sources, such point and line sources, but also surface and
volumetric sources, such as surface emitting sources (emitted from flat circular, elliptical, or
rectangular surfaces), surface emitting bulk sources (emitted from cylindrical fiber, spherical,
cuboidal, or tubular surfaces), and volumetric sources (emitted from the volume of a cube,
or tissue region for fluorescence emission). Our extensive selection of optical sources provides
the ability to tailor spatial and angular characteristics and is described further in Sec. 3.3.

2.8 Detectors

MCCL provides options for detectors that tally upon the exit of photons from the tissue, i.e.,
reflectance and transmittance, and detectors that require data associated with the photon trajec-
tory to determine a tally internal to the tissue, i.e., absorbed energy, fluence, radiance, and
momentum transfer.16 The detector spatial bins can be defined in terms of Cartesian and/or cylin-
drical grid specifications. Angular bins can be custom designed using polar and azimuthal bin
specifications. MCCL provides detectors supporting common spatial and/or temporal detection
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schemes, i.e., spatially resolved (based on source–detector separation), spatial-frequency domain
(for spatially modulated sources), temporally resolved, or temporal-frequency domain (for inten-
sity-modulated sources).

The MC estimators for the spatial-frequency and temporal-frequency domains are generated
by forming a complex photon weight from analysis of spatial and temporal Fourier transforms of
the RTE. For both domains, modified shortcut methods17,18 are used to provide results for multi-
ple spatial or temporal frequencies derived from a single MC simulation.

2.9 Databases and Photon Biography Postprocessing

MCCL enables the user to save photon trajectory information into a database that can be post-
processed later by the MCPP. For example, the user can specify in the input file for a
“DiffuseReflectance” database to be generated. This database stores the photon exiting
position, direction, exiting weight, and time of flight prior to exit for each of the photons exiting
the tissue surface.

Such a database can serve many uses. The user can examine the impact of bin size (angular,
spatial, temporal, and spatial/temporal frequency) on the resulting tally and its variance.
Moreover, such a database can be postprocessed to obtain other tallies at a fraction of the com-
putational cost compared to an independent MC simulation.

2.10 Perturbation and Differential Monte Carlo

Perturbation Monte Carlo (pMC) and differential Monte Carlo (dMC) estimates can also be
provided by postprocessing a database that compiles the collision locations and length of track
segments for each of the detected photons.19 Perturbation MC enables the user to obtain rigorous
estimates of the change in response of any detector for a specified (small) change in the tissue
optical properties without the need to run separate MC simulations. This is performed by
using the random walks of a simulation based on the baseline tissue optical properties and
appropriately re-weighting the random variable using the Radon–Nikodym derivative.20 The
Radon–Nikodym derivative also enables the determination of derivatives7 of a measured signal
relative to changes in the optical properties. This capability provides an efficient means for
sensitivity analysis and performing a gradient-based optimization for the resolution of inverse
problems.6,7,21–26 The ability to compute pMC and dMC estimates within a MC simulation and
use them for sensitivity analyses or inverse solutions represents a unique aspect of our software.
Further detail and depiction of our pMC/dMC software design is provided in Sec. 3.5 with
sample results provided in Sec. 4.

3 Architecture and Usage of MCCL

3.1 Software Architecture

The MCCL framework provides the user with the ability to (a) specify inputs necessary to define
a simulation (Input), (b) execute the simulation (MCCL Engine), and (c) visualize (MATLAB27/
Octave28 plots), and/or further analyze (MCPP) simulation results. Specific software interfaces
have been designed to provide each of these functionalities. A subset of the functionality pro-
vided by these three components is schematically shown as rectangles with dashed lines in
Fig. 1. Sample classes that implement these interfaces are shown within some rectangles.

The MCCL input file is written in JavaScript Object Notation (JSON) and is read by the
MCCL Engine. The input is comprised of three major sections that allow the user to specify
the simulation source, tissue, and detectors, each which have interface definitions. Sample
input files are shown on our GitHub website Sample Input & Output (https://github.com/
VirtualPhotonics/Vts.MonteCarlo/wiki/MCCL-Sample-Input-And-Output). At the start of the
file there is also an “OutputName” that designates the folder where the results will be written,
“N” the number of photons to launch and “Options” that specify various options to the sim-
ulation. The detectors can be specified on the tissue surface, reflectance, transmittance, emitted
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radiance, or history detectors that capture internal tallies such as, absorbed energy, radiance, or
fluence. The internal tallies are referred to as “history detectors” because they require informa-
tion from all interactions that each photon experiences along its trajectory.

The detector output is written to binary files that can be plotted and visualized using
MATLAB or Octave and/or saved to a database for further analysis using MCPP (see Sec. 3.5).
Analysis results include perturbation MC results, e.g., estimation of the perturbed reflectance
due to μa and/or μs changes in any/all regions of the tissue R�ðμa þ Δμa; μs þ ΔμsÞ, and differ-
ential MC estimates of the derivative of reflectance with respect to μa and/or μs, ∂R�∕∂μa, and
∂R�∕∂μs. The pMC and dMC detector results can be generated by specifying them in an MCCL
input file or by generating a database and specifying them in an MCPP input file. MATLAB/
Octave script files to perform the plotting are provided with the software.

3.2 MCCL Inputs: Options

The “Options” section of the input file contains various settings that specify the desired char-
acteristics of executing the transport of photons through the tissue. All settings are described in
this section in the order they appear in the input file.

Setting the “Seed” to 0 or a greater integer will generate a reproducible stream of random
numbers. Setting the seed to −1 will designate a random stream of random numbers each time
the simulation is executed.

The “RandomNumberGeneratorType” requires the user to specify the
“MersenneTwister.”8

Setting “AbsorptionWeightingType” to “Analog,” “Discrete,” or “Continuous”
will specify application of Analog, DAW, or CAW random walk processes to account for absorp-
tion, respectively.

The “PhaseFunctionType” specifies the probability distribution function governing the
photon deflection angle for scattering. Currently implemented options are “Henyey
Greenstein” which is typically used in tissue optics problems29 or “Bidirectional,”
which can be used to model one-dimensional (1D) slab problems.

The “Databases” options provide the ability to save information regarding photon trajec-
tories to enable subsequent analysis/post-processing of the simulated photons. Setting this option
to “DiffuseReflectance” will generate a binary database that includes pertinent photon
data such as the exiting location, direction, and weight of the photon. This database can be post-
processed in a few seconds to produce any of our reflectance detector estimates (Sec. 2.8).

pMC and dMC estimates are invoked by setting “Databases” to “pMCDiffuse
Reflectance.” This setting is possible only when the “AbsorptionWeightingType”
is set to “Discrete” or “Continuous.” In addition to the photon exiting data when using

Fig. 1 Software architecture: dashed lines represent interfaces and example classes that imple-
ment the interfaces (see Sec. 2.2). (a) Input: user specifications of system under investigation,
(b) MCCL Engine: random walk process designated by input including photon weight decay during
random walk process via absorption weighting specification, and detector tallies, and (c) Output:
visualization of detector results and/or analysis of results.
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the “DiffuseReflectance” option, a “CollisionInfo” database is generated that saves
the photon path length and number of collisions in each tissue region. When the “Absorption
WeightingType” is set to “Continuous” and only μa changes within any tissue region are
specified, Beer’s law is then applied to determine the final weight. pMC is utilized in all other
cases, i.e., for absorption or scattering perturbations using DAWor scattering perturbation using
CAW. pMC and dMC can be used together to solve inverse problems through the use of
a gradient-based optimization algorithm.6,7,21–23,25,26 Further details are provided in Sec. 4.1.

Setting “TrackStatistics” to true designates that a “statistics.txt” file will be
created at the end of the simulation. This file will list the number of photons that (a) exit the top
surface of the tissue, (b) exit the bottom surface of the tissue, (c) are specularly reflected by the
tissue surface and do not propagate within the tissue volume. Moreover, if Russian Roulette (RR)
is employed by seeing the option “RussianRouletteWeightThreshold” to a
positive, non-zero value, this file will list the number of photons killed by RR. Such statistics
can be valuable to diagnose potential problems in the setup of a simulation and/or understand
unexpected results. Moreover, conservation of photon weight (energy) can be verified through
examination of these numbers.

The “RussianRouletteWeightThreshold” specifies the threshold value of the pho-
ton weight that invokes RR. Russian Roulette is an unbiased method for reducing the run time of
a simulation by killing off photons once their weight falls below a specified threshold with a fair
game probability.2 The rule governing the fair game probability once the photon weight falls
below the threshold is to amplify the photon weight by the factor ð1∕PÞ with probability P,
or kill the photon with probability 1 − P. The usage of RR is only possible for MC simulations
using either discrete or continuous absorption weighting (Sec. 2.6).

The “SimulationIndex” identifies the output from the simulation in the case where
multiple simulations are running at the same time, e.g., when performing a parameter sweep
or when multiple processors are specified (Sec. 3.4).

3.3 MCCL Inputs: SourceInput, TissueInput, and DetectorInput

We offer an extensive list of source, tissue, and detector inputs to MCCL users. The full list of
source, tissue, and detector inputs can be found in an online document, “Source, Tissue, Detector
Parameters,” in the right-hand menu of our MCCL GitHub wiki (https://github.com/
VirtualPhotonics/Vts.MonteCarlo/wiki). In this section, we describe a subset of the options.
Table 1 gives a partial list of the source options available in MCCL.

Details of our various source configurations (e.g., source code, graphical representations, and
equations that are used to sample the source) are described in an online document, “Source
Definitions,” in the right-hand menu of our MCCL GitHub wiki (https://github.com/
VirtualPhotonics/Vts.MonteCarlo/wiki). Figure 2 shows two source models available in
MCCL, the external or internal location of the point source and the initial tissue region index.

MCCL provides detectors to tally photon propagation as a function of space, time, spatial
frequency, and temporal frequency with user control over the range and resolution of the inde-
pendent variable of interest. Tables 2 and 3 provide partial lists of the reflectance and history
detector options, respectively, available in MCCL. A full list for reflectance, transmittance, and
history detectors can be found in an online document, “Source, Tissue, Detector Parameters,” in
the right-hand menu of our MCCL GitHub wiki (https://github.com/VirtualPhotonics/Vts
.MonteCarlo/wiki).

3.4 Command Line Options

Once the downloadable MCCL zip file is extracted, typing command “mc help” (on Mac and
Linux systems the command is “./mc help”) will display a list of command line options. Typing:

mc geninfiles
will generate example input files. Once input files have been generated, typing:

mc infile=infile_one_all_detectors.txt
will run MCCL with “infile_one_all_detectors.txt” which provides examples for
how to define each of our detector types.
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The command line environment provides the ability for the user to specify multiple MC
simulations by defining a parameter sweep of desired inputs. For example, a user may wish
to execute a given MC simulation for different combinations of optical properties with a fixed
source, tissue, and detector configuration. The option “paramsweep=sweepParameter,
start,stop,count” allows the user run simulations for varying μa, μs, g, and n values
in any tissue layer. This is done by substituting the specified values into the input file and running
the resulting simulations. The following example runs simulations using the “myinput” input file
as the template with the μa value in layer 1 set to 0.01, 0.02, 0.03, 0.04, or 4 μa values within the
range [0.01 to 0.04]. This single command launches four simulations with results found in
folders that use the “OutputName” specified in the input file and appending the parameter
sweep values. For example, setting “OutputName” to “test” in the input file

“OutputName”: “test,”
and using the command:

mc infile=myinput paramsweep=mua1,0.01,0.04,4
will generate output folders named “test_mua_0.01,” “test_mua_0.02,” “test_
mua_0.03,” and “test_mua_0.04.” A sweep parameter “nphot” can designate the num-
ber of photons to launch

mc infile=myinput paramsweep=nphot,1000000,2000000,2
will execute two simulations, one with 1 million photons launched and the second with two
million.

Also available are “paramsweepdelta” that uses a “delta” as the fourth parameter
rather than a count, and “paramsweeplist” that can be used for values that are not equi-
spaced. Equivalent commands to the paramsweep example using “paramsweepdelta” or
“paramsweeplist” are:

mc infile=myinput paramsweepdelta=mua1,0.01,0.04,0.01
mc infile=myinput paramsweeplist=mua1,4,0.01,0.02,0.03,0.04

3.5 MCCL Outputs

The MCCL Engine produces binary files containing the detector tallies that can be plotted with
MATLAB or Octave and/or binary database file(s) for further processing or analysis using
our MCPP software (Fig. 3). The detector results are placed in a folder designated by the
input file value for “OutputName.” Editing “load_results_script.m” and defining
“datanames” to be the “OutputName” will define the file location with the results to be
plotted. Executing the “load_results_script.m” at the MATLAB or Octave prompt
will plot all detector results residing in the output folder. If only a subset of the detector
results is desired, the list of toggles at the top of the script should be edited. For example,
“show.ROfRho = 1” will provide visualization of only the results corresponding to that single
detector. This script calls jsonlab code (https://github.com/fangq/jsonlab), an open-source

Fig. 2 Example source implementations showing 100 initial unit directional vectors emanating
from the source for (a) a surface directional circular source (DirectionalCircular) with radius
0.1 mm, converging with angle of 30 deg, and (b) an internal isotropic point source
(IsotropicPoint) at depth z ¼ 3 mm. The principal axis is shown in red and the z ¼ 0 plane is the
tissue surface.
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MATLAB/Octave JSON encoder and decoder for Windows, Mac, and Linux, that is included
with the zip file. If the user desires second moment data for any detector, they can set the
“TallySecondMoment” flag to “true” for the corresponding detector. The second moment
estimates can provide the standard deviation about the mean estimate for the detector. An exam-
ple showing the screen display when MCCL is executed and the resulting plots, is provided on
our MCCL GitHub wiki Sample Input and Output (https://github.com/VirtualPhotonics/
Vts.MonteCarlo/wiki/MCCL-Sample-Input-And-Output).

The database output can be post-processed to produce any specified reflectance or transmit-
tance detector result, perturbation MC reflectance estimates and/or derivatives of these estimates
with respect to μa or μs to provide sensitivity results. The database can also be used within an
inverse solution as shown in Fig. 3. The derivative estimates can be used within a nonlinear
gradient optimization algorithm to resolve inverse problems. This algorithm executes a least-
squared minimization between specified measurements and perturbation MC reflectance esti-
mates to find tissue optical properties that would provide an MC prediction that best matches
the measurement data.

Bundled with the downloadable MCCL zip file are MATLAB/Octave scripts to run inverse
solutions on Linux, Windows, and Mac. Currently, MATLAB interop code to run inverse sol-
utions is available on Windows only. We developed custom scripts that provide inverse solutions
using pMC and dMC without using the interop code. Three examples of inverse solutions are
provided in “mc_inverse.m”. The basic steps performed in the script are to: (1) create an
input file that will generate a baseline database, (2) run that input file with MCCL, and (3) run an
optimization algorithm using MATLAB “lsqcurvefit” or “fminsearch” for users that do
not have access to the MATLAB Optimization Toolbox or are using Octave. The optimization
algorithm requires a script that provides: (a) forward estimates for the updated parameters to be
fit determined by pMC, and (b) the Jacobian of those estimates determined by dMC, both of
which are generated by post-processing the database from the baseline simulation. A spectral
database spreadsheet is included in the zip, “SpectralDictionary.xlsx”, that provides
the spectra for oxyhemoglobin, deoxyhemoglobin,30 and water.31 The examples in “mc_in-
verse.m” include sample code to generate an inverse solution to (1) find μa and μs given
spatially resolved measurements, (2) find absorber concentrations ofHbO2, Hb, and water across
6 wavelengths, and (3) find absorber concentrations of Hb and HbO2 and power law μ 0

s ¼ ½Aλ−b�
scatterer coefficients A and b given four wavelengths.

3.6 Validation and Comparison with MCML

Validation of our MC simulation engine is difficult because no exact RTE solutions exist for 3D
problems. One approach to ensure that the MC simulations provide estimates that solve the RTE,
is to derive the estimators from the integral form of the RTE. In previous publications, we have

Fig. 3 MC postprocessing and inverse solutions: (a) MCPP: has the ability to post-process a data-
base to produce detector estimates and (b) inverse solution uses photon database and estimates
of perturbation MC and differential MC within a gradient-based optimization routine to determine
optical properties given a set of measurements.
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provided formulations for the reflectance estimators that we use in MCCL utilizing either
discrete or continuous absorption weighting.14,15

While an exact RTE solution to a 3D problem is not available, an analytic solution is available
for the 1D slab problem with bidirectional scattering.32 We have embedded unit tests within our
software that use Analog and CAW random walk processes with bidirectional scattering to deter-
mine the total diffuse reflectance, total absorbance and total diffuse reflectance in a 1D refractive
index matched slab. Our unit tests determine the MCCL mean and second moment estimates of
these three detectors and verify (a) that the means are within 3σ of the respective analytic sol-
utions, and (b) that the sum of these three detector tallies to 1. Table 4 displays the estimates for
diffuse reflectance, total absorption, and diffuse transmittance using CAW as N increases, com-
pared to the analytic solution. We specified optical properties μa ¼ 0.01∕mm, μ 0

s ¼ 1∕mm,
g ¼ 0.8, n ¼ 1, and a 5-mm slab thickness. It is noteworthy that when N is increased by a factor
of 100, the standard deviation reduces by a factor ð1∕ ffiffiffiffi

N
p Þ providing another decimal digit of

accuracy.
We have also compared simulation results provided by MCCL with those provided by

MCML5 for the case of a two-layer tissue illuminated by an collimated beam source. We com-
pare estimates of specular reflection, total diffuse reflectance, total absorbance, total transmit-
tance, and spatially resolved reflectance and absorbed energy in cylindrical coordinates. To
perform this comparison, we used an MCML sample infile that defines a two-layered tissue
with optical properties shown in Table 5. The number of photons launched by MCCL and
MCML is N ¼ 106. MCML utilizes RR with a threshold of 0.0001. We ran the MCCL sim-
ulations with RR with the same threshold and without RR.

Table 6 gives the results comparing MCML and MCCL with 1σ errors provided for MCCL.
Figure 4 shows the plots of spatially resolved reflectance in cylindrical coordinates, RðρÞ, with

Table 4 Convergence to analytic solution as N , the number of photons launched, increases.

Analytical
MCCL� 1σ

Solution N ¼ 102 N ¼ 104 N ¼ 106

Diffuse reflectance 0.68818 0.69809� 0.04365 0.68569� 0.00422 0.68760� 0.00044

Absorption 0.04780 0.04930� 0.00535 0.04771� 0.00042 0.04781� 0.00004

Diffuse transmittance 0.26402 0.25262� 0.04063 0.26660� 0.00419 0.26459� 0.00042

Table 5 Two-layer tissue optical properties used in comparison with MCML.
Air is above tissue with n ¼ 1.0.

Layer Thickness (mm) μa (/mm) μs (/mm) g n

1 0.1 2 20 0.7 1.3

2 ∞ 1 20 0.9 1.4

Table 6 Comparison of single valued tallies obtained using MCCL versus MCML.

Tally MCML MCCL with RR� 1σ MCCL without RR� 1σ

Specular reflectance 0.0170 0.0171� 0.0001 0.0168� 0.0001

Diffuse reflectance 0.1050 0.1049� 0.0002 0.1046� 0.0002

Absorption 0.8780 0.8780� 0.0002 0.8786� 0.0002

Diffuse transmittance 0.0 0.0 0.0
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1σ errors displayed for MCCL and the relative difference between the two plots. This compari-
son is documented on our MCCL GitHub wiki (https://github.com/VirtualPhotonics/Vts
.MonteCarlo/wiki/MCCL-Validation-And-Comparison-With-MCML).

4 Applications of MCCL

MCCL has been used to solve a variety of problems which include solving inverse problems
using perturbation and differential MC, analyzing photon momentum transfer relevant to speckle
imaging of flow, and determining the relative efficacy of port wine stain treatment modalities.

4.1 Inverse Solutions across Wavelength Using pMC/dMC

The “mc_inverse.m” script described in Sec. 3.5 provides three examples of inverse solu-
tions. The examples include solutions across wavelength to determine chromophore concentra-
tions and/or scattering coefficients. Figure 5 shows the inverse solution results for Example 2 in
“mc_inverse.m.” In this example, the inverse problem examined is the determination of con-
centrations of Hb, HbO2, and H2O given a set of measurements (Meas) at six wavelengths. The
simulated measurements of reflectance as a function of wavelength were produced using a colli-
mated source and scaled MC33 (red x’s). A database based on an initial guess (IG) of Hb
(70 μM), HbO2 (30 μM), and H2O (80% volume fraction) was generated using 105 photons.
The algorithm generates derivatives of reflectance with respect to these chromophores to update
this guess using a gradient-based optimization that minimizes the difference between the simu-
lated measurements and perturbation MC estimates of the updated concentrations. After running
the inverse solution the output at the conclusion of the inverse solution shows the actual
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Fig. 4 Comparison with MCML: plot of RðρÞ with RR turned on for both MCML and MCCL.
One σ error bars for MCCL are smaller than symbols shown. The relative difference between
the two results is plotted below.
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Fig. 5 Inverse solution results produced by running mc_inverse.m using N ¼ 105 photons to
determine chromophore concentrations across 6 wavelengths (Example 2 in “mc_inverse.m”).
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concentrations of Hb, HbO2, and H2O that were used to generate the simulated measurements
(Meas), the IG, and the value of χ2 at these values, the converged values of concentrations (Conv)
and the associated χ2 value, and the error in the converged value compared to the actual.34

Meas = [72.000 35.000 0.600]
IG = [70.000 30.000 0.800] Chi2=4.946e-06
Conv = [75.468 35.707 0.620] Chi2=2.159e-07
error= [0.048 0.020 0.033]

These results show that the simulation of 105 photons and six wavelengths is sufficient to
provide an inverse solution using pMC and dMC with estimates of the actual chromophore
concentrations with errors of <5%.

4.2 Momentum Transfer Analysis

A multilayered tissue model was used to study the spectral and depth dependence of speckle
contrast.16,35,36 Dunn et al.35 used MC momentum transfer detectors to compare speckleplethys-
mographic (SPG) with photoplethysmographic (PPG) imaging with in vivo measurements. The
MC model consisted of a flat source, sufficiently broad to avoid edge effects, illuminating
an eight-layer tissue model (epidermis, papillary dermis, upper blood net, reticular dermis,
lower blood net, lipid, arterial layer, and lipid) using optical properties at wavelengths 532,
660, and 860 nm, and discrete absorption weighting. Dynamic momentum transfer detectors
were utilized that allow the user to specify the blood volume fraction in each tissue region
(ReflectedDynamicMTOfXAndYAndSubregionHistDetector). At each photon col-
lision, the detector uses a uniformly distributed random number and compares it to the blood
fraction of the region where the collision occurred to determine if the photon hit blood, and if so,
tally to the momentum transfer for that region. MC simulations were executed on systems with
the arterial layer expanded due to increased flow speed and contracted to simulate the pulsatility
of arteries during systole and diastole, respectively, while compressing the upper and lower
blood net layers accordingly to maintain a total thickness of 10 mm. The flow speed was varied
within a range consistent with arterioles and capillaries. The MC detector estimates generate
a probability distribution of momentum transfer that was used within a theoretical model to
calculate speckle contrast using the correlation function. Figure 6(a) shows the SPG and PPG
measurements taken from four subjects, and Fig. 6(b) comparison of the in vivo estimates with
the in silico estimates provided by MC, which indicate good agreement.

Fig. 6 (a) NIR SPG, green SPG, and green PPG amplitude percentages from four subjects and
(b) the MC estimates of the amplitude percent ranges (in silico) compared to the corresponding
values across the subjects. Reprinted with permission from Ref. 35 © The Optical Society.
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4.3 Tissue Treatment Modality Comparison

The efficacy of intense pulsed light (IPL) to treat port wine stains using a broadband light spec-
trum approach compared to single wavelength (595 nm) pulsed dye laser (PDL) irradiation, was
studied using MC estimates of absorbed energy in a vessel embedded in the hypodermis.37

Measurements were taken on an animal with a custom window chamber holder illuminated from
the epidermal side with either the IPL or PDL. The MC model consisted of a flat circular
source illuminating a four-layer system (skin, hypodermis, water and glass) with a vessel
embedded in the hypodermis layer. An absorbed energy detector in Cartesian coordinates
(AOfXAndYAndZDetector) and DAW were specified for the simulations which tallied
deposited absorbed energy at each collision within a voxelized grid. For each simulation,
106 photons were launched which ensured that the relative errors were <2%.

Figure 7(a) shows the absorbed energy deposition for the wavelengths that comprise the IPL
treatment, Fig. 7(b) the PDL versus IPL composite absorbed energy maps, and Fig. 7(c) a line
profile along depth (z) with 1σ errorbars. These results indicate that the combined total absorbed
energy induced by the IPL is higher compared to that of the PDL in the top half of the vessel.
This result is consistent with experiments that showed the efficacy of IPL treatments to produce
persistent vascular shutdown compared to PDL treatments.

5 Future Implementations

All software developed by the Virtual Photonics team is licensed under the MIT License and all
repositories are on GitHub. Contributions are welcome. Any issues with our software can be
described on the “Issues” tabs. We also have a Google Groups site (https://groups.google
.com/g/virtual-photonics) where anyone can post questions or comments.
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Fig. 7 (a) Absorbed energy maps of a vessel over 500- to 600-nm range, (b) comparison of PDL
and composite IPL, (c) line profile of absorbed energy distribution with 1σ error bars. Reprinted
with permission from Ref. 37 © John Wiley and Sons.
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