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Abstract

Significance: Quantifying subject-specific optical properties (OPs) including absorption and
transport scattering coefficients of tissues in the human head could improve the modeling of
photon propagation for the analysis of functional near-infrared spectroscopy (fNIRS) data and
dosage quantification in therapeutic applications. Current methods employ diffuse approxima-
tion, which excludes a low-scattering cerebrospinal fluid compartment and causes errors.

Aim: This work aims to quantify OPs of the scalp, skull, and gray matter in vivo based on
accurate Monte Carlo (MC) modeling.

Approach: Iterative curve fitting was applied to quantify tissue OPs from multidistance con-
tinuous-wave NIR reflectance spectra. An artificial neural network (ANN) was trained using
MC-simulated reflectance values based on subject-specific voxel-based tissue models to replace
MC simulations as the forward model in curve fitting. To efficiently generate sufficient data
for training the ANN, the efficiency of MC simulations was greatly improved by white
MC simulations, increasing the detectors’ acceptance angle, and building a lookup table for
interpolation.

Results: The trained ANN was six orders of magnitude faster than the original MC simulations.
OPs of the three tissue compartments were quantified from NIR reflectance spectra measured at
the forehead of five healthy subjects and their uncertainties were estimated.

Conclusions: This work demonstrated an MC-based iterative curve fitting method to quantify
subject-specific tissue OPs in-vivo, with all OPs except for scattering coefficients of scalp within
the ranges reported in the literature, which could aid the modeling of photon propagation in
human heads.
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1 Introduction

Human brain activities have long been of great interest to many fields stretching from basic neuro-
science, branches of medicine, and education to even brain-computer interface. Functional mag-
netic resonance imaging (fMRI) is the gold standard method of brain activity monitoring with great
three-dimensional (3D) spatial resolution over the whole brain. However, the temporal resolution
of fMRI is low, and the subject or patient is restricted to the supine position in an MRI scanner,
which is expensive and not readily accessible. Functional near-infrared spectroscopy (fNIRS)
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employs low-cost and compact instruments to monitor brain activities with moderate temporal and
spatial resolution. Since fNIRS measurements can be taken while the subject or patient is in any
position or even moving, their applications are more versatile than fMRI.

In fNIRS, red to near-infrared light in at least two wavelengths is shone on the head and
intensity changes of the diffuse reflection light are measured. The cerebral cortex consumes
oxygen during neuronal activation, which induces increases in local blood volume and blood
flow. The concentrations of oxyhemoglobin (HbO) and deoxyhemoglobin (Hb) in the active area
change consequently. Quantification of hemoglobin concentration changes (ΔC) is achieved
based on the modified Beer–Lambert law (MBLL)1

EQ-TARGET;temp:intralink-;e001;116;628ΔOD ¼ PL × ðεHb × ΔCHb þ εHbO × ΔCHbOÞ; (1)

where ΔOD is the logarithm of the ratio of diffuse reflectance intensities between two-time
points, PL is the light pathlength in the cerebral cortex, and ε is the molar extinction coefficients
of the hemoglobins. In essence, the concentration changes can be calculated from intensity mea-
surements if the light pathlength in the corresponding tissue compartment can be quantified.
Many fNIRS studies have used a pathlength calculated using a fixed differential pathlength fac-
tor,2 which is the ratio between the pathlength in tissue and the distance between the source and
detector at the scalp surface. Subject-specific pathlengths can be obtained based on a homo-
geneous tissue model and optical properties (OPs) including the absorption coefficient (μa)
and the transport scattering coefficient (μ 0

s)
3 measured by for example time-resolved (TR)4 or

frequency-domain (FD)5 reflectance spectroscopy.
Although MBLL is widely adopted to achieve acceptable results for qualitatively assessing

the general trend in hemodynamic changes, its ability to accurately quantify the concentration
changes is debatable because the cerebral cortex, the target region of fNIRS, only accounts for
a small portion of light attenuation in the head, which is known as the partial volume effect.6–8

To separate the cerebral contribution from the typically stronger influence of the extra-cerebral
tissue on the measured intensity changes, it is important to separately estimate partial pathlengths
in the brain and the extra-cerebral tissue compartment,9,10 which can be achieved byMonte Carlo
(MC) simulations of light propagations in a realistic head model such as that segmented from
MRI scans of the head.11 However, OPs of major tissue types in the head measured from ex-vivo
tissue samples show wide variations among studies,12 which can be attributed to different sample
preparation procedures13 and intersubject variability. Moreover, there were substantial inter-
subject variations in pathlengths estimated by finite-element calculations of light propagation
using the same OPs on 40 subject-specific head models.14 Therefore, it is imperative to develop
a noninvasive method for quantifying tissue OPs in the head of individual subjects to account for
intersubject variabilities.

Precisely measuring head tissue OPs for individual subjects can also help other applications.
For example, photobiomodulation is a technique that uses red or near-infrared light to stimulate
or even heal tissue and has been applied to the human brain against dementia, Alzheimer’s dis-
ease, and Parkinson’s disease. The beneficial effect of photobiomodulation shows the biphasic
dose response,15 which requires the dosage to be within a proper range. Research has been done
to simulate the fraction of energy delivered to the human brain under transcranial stimulation,12

and found that the dosage in the brain is greatly affected by the head tissue OPs.
NIRS is often used to noninvasively measure the head OPs. The TR and FD NIRS systems

have been used to measure head OPs in many studies,16–18 but the instruments are more com-
plicated and expensive than continuous-wave (CW) NIRS systems. CW NIRS systems have also
been used to quantify OPs of piglets’ brains19 and human brain.20 In these studies, the diffusion
approximation of the radiative transfer equation for a semi-infinite homogeneous model19 or a
two-layered (i.e., extra-cerebral and cerebral) model16–18,20 was used to simulate diffuse reflec-
tance spectra. A low-scattering cerebrospinal fluid (CSF) layer was not included in the models
due to the limitation of diffusion approximation to highly scattering media. Indeed, using the
diffusion approximation solution to simulate light propagation in a realistic head model contain-
ing a low-scattering CSF compartment could lead to significant errors.21 However, excluding the
low-scattering CSF layer could also significantly affect the simulation results of photon propa-
gation in the head.22,23 The MC method, on the other hand, is considered the gold standard and
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has been implemented to simulate light propagation in realistic head models.24 It has not been
used in iteratively curve fitting of NIRS data for quantifying OPs in the human head due to its
relatively long time to simulate photon propagation in a deep, complex model like the
human head.

This study aimed to establish a practical procedure to estimate the OPs of cerebral and extrac-
erebral tissue compartments in-vivo using MC-based iterative curve fitting of CW NIRS data.
Realistic human head models consisting of six tissue compartments were constructed from MRI
scans of each subject. To overcome the challenge of huge time cost in running MC simulations,
we trained an artificial neural network (ANN) to replace MC simulations as the forward model
that calculated diffuse reflectance from given OPs.25 However, due to the number and ranges of
OPs required for this study a very large number of MC-simulated reflectance was needed to train
the ANN. Therefore, the efficiency of generating the training data was enhanced by several
techniques to prevent prohibitively long simulation time. First, white MC (WMC) was used
to quickly calculate the reflectance for various μa from only one simulation result obtained using
each combination of μ 0

s. Second, WMC simulations were run for detectors with a high accep-
tance angle to increase their efficiency, and a linear regression model was built to convert the
simulated reflectance to that corresponding to the actual acceptance angle of the detectors used to
collect in-vivo NIRS data. Finally, the number of μ 0

s combinations in the training data was
increased by spline interpolation of simulated reflectance obtained from 2808 μ 0

s combinations
covering the reported ranges.12 The trained ANN was six orders of magnitude faster than the MC
simulation, making iterative curve fitting practical.

The fitting process was tested on simulated target spectra without noise and with proper noise
to analyze the theoretical performance of the proposed method. In-vivo reflectance spectra were
measured from five healthy volunteers with a broadband CW NIRS system built in-house, and
μ 0
s and μa of the scalp, skull, and gray matter were quantified. Thanks to the highly efficient

ANN forward model, uncertainty in the extracted OPs due to fluctuations in the measured
in-vivo spectra were estimated.

2 Methods

A flow chart of the proposed method is shown in Fig. 1. T1-weighted head MRI scan was per-
formed on nine subjects to obtain the anatomical structure of the head and build a 3D model for
each subject. One ANN forward model was trained for each subject and used in iterative curve

Fig. 1 Flow chart of building an ANN as a forward model and quantifying tissue OPs from
measurements.
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fitting to quantity tissue OPs of the scalp, skull, and gray matter. Due to changes in the NIRS
system, only five of the nine subjects underwent in-vivo CW NIRS measurements on the right
forehead and their tissue OPs were quantified using the proposed method. The human study was
approved by the institutional review board of National Taiwan University, and all participants
provided written informed consent.

2.1 Head Model Preparation

To make the simulation closer to reality, we performed T1-weighted MRI head scans on
nine subjects to get anatomical structure specific to each subject. The voxel size was
0.93 × 0.93 × 0.93 mm3. The MRI data were segmented using SPM26 into five compartments
including scalp, skull, CSF, gray matter (GM), and white matter (WM). The region with
relatively low MRI signal intensity in the front head was considered as sinus and manually
segmented to be the sixth compartment. One slice of the segmented head model and its corre-
sponding MRI scan slice are shown in Figs. 2(a) and 2(b), respectively. The surface of the scalp
was transformed into a mesh and the Mesh2EEG27 function was performed to find locations of
the EEG 10-5 system28 on the surface. To measure reflectance spectra from the right forehead the
source was placed at the EEG Fp2 position and the locations of the source and six detectors are
shown in Fig. 2(c). The source-to-detector separation (SDS) for the six detectors was 0.8, 1.5,
2.12, 3, 3.35, and 4.5 cm, respectively.

OPs needed by the MC method to simulate photon energy propagation in tissue include
absorption coefficient (μa), scattering coefficient (μs), refractive index (n), and anisotropic factor
(g). Ranges of the OPs for each tissue type are listed in Table 1. The refractive index was
assumed constant throughout the head to simplify MC simulations. The refractive index of the
medium outside the head was set to 1.457, which equaled to that of detector fibers to simulate the
exit angle of photons properly. The space between the source and detector fibers in the NIRS
system was a soft pad with n around 1.42, which was close to the value used in the simulations.

Fig. 2 The head model (a) a slice of the segmented head model, (b) the corresponding MRI scan,
and (c) positions of the source and detector fibers at the head surface.

Table 1 Ranges of OPs for each compartment or medium.

Tissue type μa (1/cm) μ 0
s (1/cm) n g

Outer medium 0 0 1.457 —

Scalp 0.1 to 0.6 5 to 35 1.4 0.9

Skull 0.05 to 0.45 5 to 35 1.4 0.9

CSF 0.015 to 0.1 1 to 3.7 1.4 0.9

GM 0.05 to 0.5 5 to 35 1.4 0.9

WM 0.025 to 0.25 15 to 105 1.4 0.9

Sinus 0 0 1 —
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In the diffuse regime, effects of μs and g on photon propagation in tissue can be combined
into the transport scattering coefficient (μ 0

s), which is expressed as

EQ-TARGET;temp:intralink-;e002;116;711μ 0
s ¼ μs × ð1 − gÞ: (2)

The anisotropy factor of tissue was assumed to be constant since its effect was considered by
μ 0
s. Wavelength-dependent μ 0

s were assumed to follow an inverse power-law function of wave-
length λ29 and calculated with coefficients A and K as

EQ-TARGET;temp:intralink-;e003;116;643μ 0
sðλÞ ¼ A × λ−k: (3)

The wavelength dependence of tissue μa was assumed to be known based on absorption
coefficients of major tissue chromophores in the wavelength range analyzed in this study.
Exploiting the wavelength dependences of μ 0

s and μa could improve the efficiency and robustness
of the inverse model applied on broadband spectra since only a few unknown parameters need to
be determined instead of two OPs for each wavelength. The μaðλÞ of a tissue compartment was
calculated as

EQ-TARGET;temp:intralink-;e004;116;539μa;tissueðλÞ ¼ 2.303 × ½εHbOðλÞ × StO2 þ εHbðλÞ × ð1 − StO2Þ� × tHBþ
Xm
i¼1

μiaðλÞ × Ci; (4)

where εHb and εHbO are the molar extinction coefficient of Hb and HbO, respectively, StO2 is the
tissue oxygen saturation, tHB is the total hemoglobin concentration, μia is the absorption coef-
ficient of 100% (v/v) of the i’th absorber other than hemoglobin, and Ci is the volume fraction of
the absorber. The ε and μia spectra used in this study are shown in Figs. 3(a) and 3(b).

μa and μ 0
s spectra of the CSF were assumed to have fixed values adopted from the literature as

shown in Figs. 3(c) and 3(d) since they are relatively small and barely affect the reflectance
spectra. The μa of WM was set to be half of the μa of GM, and the μ 0

s of WM was set to
be 3 times the μ 0

s of GM.35 Since WM depths in the segmented models are between 16 and
20 mm, the approximation of WM OPs was not expected to influence the results of quantified
tissue OPs. The tissue parameters used to calculate μ 0

sðλÞ and μaðλÞ of the five tissue compart-
ments are summarized in Table 2.

2.2 Monte Carlo Simulation and Acceleration

An open-source graphics-processing units (GPU) accelerated MC simulation tool, Monte Carlo
eXtreme (MCX),36 was used to perform simulations of photon propagation in voxel-based head
models. To accelerate the simulations, we performed WMC in which μa of all tissue types were
set to zero and the pathlength of each detected photon in each tissue compartment was recorded.
After the simulation with one set of μ 0

s was done, the reflectance of tissue models with the same
set of μ 0

s and any μa combination could be quickly calculated by summing the attenuated weight
of every detected photon according to microscopic BLL37

EQ-TARGET;temp:intralink-;e005;116;236R ¼
�XN
i¼1

e−
P

5

l¼1
μa;l×PLði;lÞ

�
∕Ntotal; (5)

where R is the calculated reflectance, N is the number of detected photons, μa;l is the absorption
coefficient of tissue compartment l, PLði; lÞ is the pathlength of the i’th photon in tissue compart-
ment l from the simulation, and Ntotal is the number of launched photons. WMC simulations
were performed using 2808 μ 0

s combinations whose values for each of the four tissue compart-
ments are listed in Table 3. The number of sampled μ 0

s values for each tissue compartment was
determined empirically and roughly followed the sensitivity of the reflectance to each compart-
ment’s μ 0

s. Results of WMC simulations, i.e., N and PLði; lÞ of detected photons, were recorded
in a lookup table, which contained 2808 entries corresponding to the simulated μ 0

s combinations.
To further reduce the number of launched photons and hence the time needed by

MC simulations while keeping the results converged, we set the numerical aperture (NA) of
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Fig. 3 (a) Absorbance spectra of 100% (v/v) collagen,30 water,31 and melanin32; (b) molar extinc-
tion coefficient spectra of oxy- and deoxy-hemoglobins33; (c) the absorption coefficient spectrum of
CSF34; (d) the transport scattering coefficient spectrum of CSF.34

Table 2 Tissue parameters used to calculate OPs of the five major tissue compartments.

Tissue Variable tissue parameters Fixed tissue parameters

Scalp tHB, StO2, Cmelanin, A, K Cwater ¼ 75%, Ccollagen ¼ 2%

Skull tHB, StO2, A, K

CSF None Literature reported values

GM tHB, StO2, A, K Cwater ¼ 75%

WM None μa;WM ¼ μa;GM

2 , μ 0
s;WM ¼ 3 × μ 0

S;GM

Table 3 μ 0
s of each tissue compartment used to construct the lookup table.

Tissue μ 0
s (1/cm) Number of points

Scalp 5, 7.5, 10, 12.5, 15, 17.5, 20, 22.5, 25, 27.5, 30, 32.5, 35 13

Skull 5, 8.75, 12.5, 16.25, 20, 23.75, 27.5, 31.25, 35 9

CSF 1, 1.9, 2.8, 3.7 4

GM 5, 11, 17, 23, 29, 35 6

Kao and Sung: Quantifying tissue optical properties in human head using continuous-wave. . .

Journal of Biomedical Optics 083021-6 August 2022 • Vol. 27(8)



detector fibers in MC simulations to be 1.0, which collected significantly more photons than
the NA ¼ 0.12 detector fibers actually used in the CW NIRS system described in Sec. 2.3.
An NA-conversion linear regression model was developed to convert simulation results of
reflectance collected by NA ¼ 1.0 fibers into those collected by NA ¼ 0.12 fibers. The resultant
NA-conversion model took six inputs including logarithm of the reflectance, logarithm of the
number of detected photons, μa;scalp, μa;skull, μ 0

s;scalp, and μ
0
s;skull. The output of the NA-conversion

model was the ratio between the reflectance collected byNA ¼ 0.12 fibers and that byNA ¼ 1.0

fibers. Each data point in the lookup table was simulated using MCX with 109 photons and
a detector NA ¼ 1.0.

After MC simulations were done, we used the lookup table to generate data for training ANN
forward models. We randomly chose 3000 μa combinations within the ranges reported in Table 1
and calculated the corresponding reflectance using Eq. (5) for each μ 0

s combination in the table.
Then the reflectance simulated by NA ¼ 1.0 fibers was converted into reflectance detected by
NA ¼ 0.12 fibers using the NA-conversion model. Since the error introduced by interpolation
was rather small under these μ 0

s sampling intervals, we could augment the amount of training data
by interpolation between the simulated μ 0

s values. Based on the 2808 μ 0
s combinations in the

lookup table, more reflectance values for other μ 0
s combinations could be readily obtained

through spline interpolation. We randomly chose 3000 μ 0
s combinations and calculated their

reflectance values, producing a total of ð2808þ 3000Þ × 3000 ¼ 17.4 million OP combinations
with reflectance values for training ANN forward models in a reasonable time.

The 17.4 million sets of OP/reflectance data for each subject were split into training, val-
idation, and test datasets in fractions of 75%, 10%, and 15% respectively. Inputs to the ANN
models were μa and μs of the four major tissue compartments in Table 3, and outputs were
reflectance values received by the six detectors. We used a fully connected neural network with
four hidden layers consisting of 850, 550, 300, and 150 neurons, respectively.

2.3 Broadband Near-Infrared Spectroscopy Instrument

We built a broadband CW NIRS system to measure in-vivo diffuse reflectance spectra at six
SDSs from the forehead of five healthy volunteers. A schematic diagram of the system is shown
in Fig. 4(a). We used a quartz tungsten halogen lamp (66997-250Q-R085, Newport Corporation,

Fig. 4 (a) Schematic diagram of the CW NIRS system, and photographs of (b) the bottom view of
the holder showing locations of the fibers, and (c) the holder installed on the forehead.

Kao and Sung: Quantifying tissue optical properties in human head using continuous-wave. . .

Journal of Biomedical Optics 083021-7 August 2022 • Vol. 27(8)



Irvine, California, United States) as the light source. Two filters were used to filter out wave-
lengths below 650 nm or above 1050 nm, and the remaining light was guided to the subjects by a
bundle of 16 fibers whose NA was 0.39. The outer diameter of the active area of the source
bundle was about 4.2 mm. The light remitted by tissue was collected by six detector fibers with
a core diameter of 0.4 mm, NA of 0.12, and SDS of 0.8, 1.5, 2.12, 3, 3.35, and 4.5 cm, respec-
tively. For convenient reference in the manuscript, the detectors were numbered as 1 to 6, respec-
tively. A lens and an objective lens were used to image the end-face of the detector fibers to
the entrance slit of an imaging spectrograph (HOLOSPEC-F/1.8- NIR, Oxford Instruments,
Abingdon, Oxfordshire, United Kingdom), and spectra were measured by an electron-multiply-
ing charge-coupled device (EMCCD) (Newton DU970P, Oxford Instruments) with a spectral
resolution of about 4 nm. To make sure that the contact between the fibers and scalp was stable,
we 3D-printed a curved holder and used springs as shown in Figs. 4(b) and 4(c) to press the fibers
against the scalp with consistent pressure. The holder interfaced the scalp surface with a soft
black pad made of polydimethylsiloxane (PDMS) to ensure stable and tight contact with
the scalp surface. Ultrasound gel was smeared on the scalp near the measured site before the
holder was mounted to prevent any air gap between the fibers and the scalp. The holder was
placed on the subjects’ right forehead with the source fiber bundle pointing to the EEG Fp2
position.

We used the NIRS system to measure reflectance spectra from five healthy male subjects
aging between 24 and 47. We repeated the procedure of applying the holder/fibers and acquiring
spectra for at least three times on each subject to make sure that the contact between the fibers
and scalp was stable and to estimate the variations in measured reflectance intensities.
Coefficients of variation (CVs) of the repeatedly measured reflectance intensities at each SDS
were averaged over all wavelengths and subjects, and results are listed in Table 4.

2.4 Iterative Curve Fitting

Measured in-vivo reflectance spectra were calibrated using six homogeneous phantoms made of
PDMS, TiO2 and India ink. After μ 0

sðλÞ and μaðλÞ of the phantoms were measured by an inte-
grating sphere and the inverse adding-doubling method, we simulated reflectance spectra of the
phantoms with CUDAMCML38 and performed calibrating linear regression39 of the simulated
reflectance against the measured reflectance of the phantoms. The resultant calibrating regres-
sion equation was applied to calibrate in-vivo reflectance spectra to the absolute reflectance,
which were compared with MC simulated reflectance. The average of multiple measured spectra
of the same subject after calibration was taken as the target spectra.

We used iterative curve fitting to find values for the variable tissue parameters listed in
Table 2 that minimized the root-mean-square (RMS) percent error between simulated spectra
and calibrated in-vivo or simulated test spectra. The spectral error was calculated as

EQ-TARGET;temp:intralink-;e006;116;279Spectral error ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnd
d¼1

Pnλ
i¼1

�
Rsðd;iÞ
Rmðd;iÞ − 1

�
2

nd × nλ

vuuut
; (6)

where nd is the number of detectors, nλ is the number of wavelengths considered, Rs is the
simulated reflectance in the current iteration, and Rm is the measured reflectance after calibration
or simulated reflectance of the test spectra. We chose 22 wavelengths nonevenly distributed
between 700 and 880 nm to perform the fitting. Initial values of the tissue parameters to be
determined were chosen from a pool of 5000 sets of randomly selected parameters. Each set

Table 4 Coefficients of variation (CV) of repeated in-vivo reflectance spectra measurements on
each subject. The numbers shown are the average over all wavelengths and subjects.

SDS (cm) 0.8 1.5 2.12 3 3.35 4.5

CV (%) 3.0 4.2 5.1 5.2 5.4 12.1
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of measured spectra to be fitted was first compared with presimulated spectra corresponding to
the 5000 sets of parameters, from which 20 sets of parameters resulting in the smallest spectral
error to the target spectra were chosen as initial values. The target spectra were fitted 20 times to
address the local minimum problem. In each iteration, the temporarily guessed tissue parameters
were converted to OPs, which in turn were sent to the ANN model to get simulated spectra. The
iterative curve fitting function “fmincon” with a sequential quadratic programming algorithm
provided by MATLAB® (MathWorks, Inc., Natick, Massachusetts, United States) was used
to minimize the spectral error within 2000 iterations. During the fitting process, the tissue param-
eters were nonlinearly constrained to make sure that the corresponding OPs did not exceed the
ranges shown in Table 1.

In our previous preliminary study,40 the proposed method was validated to quantify OPs of a
three-layered tissue phantom. Details are described in the Supplementary Material, and errors for
extracted OPs of all layers were below 15%.

To assess the accuracy of the iterative curve fitting method using realistic head models, we
generated 15 sets of test spectra using randomly picked tissue parameters and each of the nine
subjects’ ANN model. We added to the test spectra 14 sets of random noise whose CV was
similar to those estimated from in-vivo measurements to simulate the fluctuations of in-vivo
spectra due to various sources including noise of the EMCCD readings, instability and variation
of the probe-tissue coupling, and physiological changes of hemoglobin concentrations in
the probed region. Therefore, there were 210 sets of test spectra with noise per subject, and
1890 sets of test spectra in total. Each set of the test spectra was fitted 20 times using different
initial values as described above.

2.5 Multiple Solution

The fitting result with the smallest spectral error among the 20 times of fittings was typically
chosen as the final result. However, since there was noise in the measured reflectance spectra,
when multiple fitting results showed spectral errors to be within the noise level of each other, we
could not verify which one was the best solution. The noise level of the NIRS system was esti-
mated to be 2% by measuring static tissue phantoms presenting reflectance intensities similar to
in-vivo forehead. When the difference between spectral errors of multiple fitting results was
<2%, we considered those fitting results as potential multiple solutions. To reduce the number
of multiple solutions and increase the chance of getting a unique solution of OPs, we employed
spectra measured from detectors that were not used in the iterative curve fitting as tie breakers
(see Table 9 for detector combinations chosen for fitting in-vivo spectra). An example of choos-
ing the best solution is shown in Fig. 5. Assume only spectra of detectors one to four were used in
the fitting. We compared spectral errors of the 20 fittings and chose the results whose spectral
errors were within 2% of the smallest error. Then we compared the spectral error of detectors not
included in the fitting, i.e., detectors 5 and 6, and again chose the results with errors within 2% of
the lowest error. If two or more solutions were chosen, they were considered multiple solutions.

3 Results

3.1 Performance of the ANN Model

Using a larger detector fiber NA to run MC simulations increases the number of photons
collected by the fiber and hence the simulation efficiency. By using the NA-conversion model
described in Sec. 2.2, we could reduce the launched photon number by about 10 times while
keeping the noise at a similar level as shown in the first and third rows in Table 5.

The WMC simulations of 2808 μ 0
s combinations in the lookup table took about 24 h using

seven NVIDIAGeForce RTX 2080. The generation of the 17.4 million training data from lookup
table took 3 h. The training of ANN was done in 2 h. To assess the combined error introduced by
the lookup table, NA-conversion model and trained ANN forward model, we simulated three
spectra, each consisting of 35 wavelengths, for two subjects using MC simulations with 2 × 1011

photons and NA ¼ 0.12 detector fibers to serve as ground-truth reflectance values. The same
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OPs were input into the trained ANNs and resultant reflectance values were compared with the
MC-simulated ground-truth values. The RMS spectral error for each detector SDS is listed in
Table 6. We found that the error between the ANN output and the ground-truth MC simulation
was comparable to the noise of MC simulations with about 109 photons (see Table 5), while the
speed of ANN was six orders of magnitude faster than MC simulations. For example, it took
about 50 min to run MCX simulations with 109 photons each to generate reflectance spectra
consisting of 22 wavelengths, while using the ANN only took 2.6 ms.

Instead of training ANN forward models, the OP/reflectance data generated by MC simu-
lations described in Sec. 2.2 could also be used to build an eight-dimensional lookup table.
We tested using linear interpolation of the lookup table as the forward model, and found that
spectral errors of the lookup table-based forward model were significantly larger than those of

Fig. 5 The process of choosing fitting solutions. (a) Spectral error of detectors included in the
fitting, from which 10 fitting results were selected, and (b) spectral error of detectors not fitted
in the 10 results selected in (a), from which only one result was selected. The shaded areas
represent the range of 2% spectral error higher than the lowest error.

Table 5 Comparison of CVs of MC-simulated reflectance between NA = 1.0 with NA-conversion
and NA = 0.12.

Photon
number

NA of
fiber

Conversion
to low NA

SDS (cm)

0.8 1.5 2.12 3 3.35 4.5

109 1.0 Yes 0.42% 0.80% 1.42% 3.60% 4.15% 8.21%

109 0.12 No 0.87% 2.60% 2.51% 7.21% 8.42% 25.80%

1010 0.12 No 0.45% 0.87% 0.86% 1.79% 2.64% 8.30%

2 × 1011 0.12 No 0.10% 0.19% 0.19% 0.40% 0.59% 1.86%

Table 6 RMS percent error between MC-simulated and ANN-generated spectra average across
two subjects and three spectra.

SDS (cm) 0.8 1.5 2.12 3 3.35 4.5

Error 2.00% 4.74% 5.02% 3.29% 3.03% 7.89%
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the ANN models for SDS equal to or longer than 3 cm, while the speed was forty times slower
than ANN.

3.2 Test Spectra Fitting Results

Fitting one set of test spectra with 20 different initial values was done in 4 min. Relative errors in
each of the six OPs estimated from iterative curve fitting of 1890 test spectra, 22 wavelengths per
spectrum, were compiled to form a histogram for one OP as shown in Fig. 6. Multiple solutions
as defined in Sec. 2.5, if existed, were included as separate data points. The histogram of
errors could be taken as an estimation of the probability density function of the fitting errors.
We defined the range of errors that covered 68% or 95% of the fitting results as confidence
intervals of each estimated OP. The errors in OPs corresponding to 68% confidence intervals
for each detector combination and OP are listed in Table 7.

To compare errors between quantified OPs using subject-specific models and a general
model, we used Colin 27 average brain model41 to train an ANN. The 1890 test spectra were
fitted using the Colin 27 ANN and OPs’ errors were calculated. Table 8 shows a comparison of
ranges of errors in the fitted OPs between each subject’s own ANNmodel and the Colin 27 ANN
model. The ranges of errors are significantly larger for the Colin 27 model. We also fitted in-vivo
spectra with the Colin 27 ANN model, and fitted OPs were different from those fitted with each
subject’s own ANN even considering the OPs’ error ranges. The results suggest that the subject-
specific model is needed for more accurate quantification of tissue OPs.

Fig. 6 Histograms of relative errors in the six OPs quantified by fitting the test spectra of detectors
1 to 6 and choosing at most four multiple solutions. The dash-dotted lines and dash lines mark
the 68% and 95% confidence intervals of the errors, respectively.

Table 7 Ranges of errors (%) in the fitted OPs corresponding to 68% confidence intervals.

Detector combinations μa;scalp μ 0
s;scalp μa;skull μ 0

s;skull μa;GM μ 0
s;GM

346 −19∼21 −9∼12 −27∼42 −15∼19 −30∼25 −28∼118

1234 −14∼20 −7∼7 −29∼41 −14∼18 −28∼25 −27∼111

2345 −17∼21 −9∼10 −26∼38 −14∼18 −29∼25 −28∼99

12345 −15∼20 −7∼8 −27∼40 −14∼17 −27∼23 −28∼89

123456 −15∼17 −7∼7 −19∼42 −15∼12 −28∼21 −27∼78
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3.3 In-Vivo Fitting Results

When fitting in-vivo spectra, we found that in some subjects not all detectors showed a small
(<15%) spectral error. This might be caused by mismatches between actual human heads and the
3D tissue models built. The model assumes homogeneous OPs within each compartment, while
in reality, there could be some inhomogeneities such as blood vessels under a detector or multiple
detectors, making it hard to achieve small spectral errors for all detectors simultaneously. Table 9
shows spectral errors for each subject when spectra from different detector combinations were
fitted. We chose the combination that included the most detectors and achieved a spectral error
below 15% as the final fitting result. The chosen detector combination for each subject is marked
in bold in Table 9, and the corresponding modeled and measured spectra are shown in
Figs. S1–S5.

Fitting in-vivo spectra by the procedure described in Secs. 2.4 and 2.5 resulted in only one
solution for all subjects except for subject 1. The two solutions of subject 1’s fitting results
showed similar scalp OPs. In Fig. 7, we compare the skull OPs of the two solutions to liter-
ature-reported values. Solution 1 had a slightly smaller μa;skull compared with values reported
in the literature, while solution 2 had a slightly smaller μ 0

s;skull compared with values reported in
the literature. Since the μ 0

s;skull from both solutions were close to literature-reported values, we
considered both of them as final results for subject 1. As a summary, OPs of the five subjects are
compared with the literature-reported values in Fig. 8.

4 Discussion

4.1 Fitting Results

We validated the process of choosing the fitting result with the smallest spectral error out of
the 20 fittings based on results of fitting the 1890 test spectra sets. For each test spectra set
the 20 fitting results were ranked according to the spectral error. To compare errors of estimated
OPs between the 20 fitting results we calculated an RMS percentage error of OPs estimated
by each fitting over the 22 fitted wavelengths and six OPs, and normalized the RMS errors of

Table 8 Comparison between fitting test spectra with subject-specific models and the general
Colin 27 model. Ranges of errors (%) in the fitted OPs correspond to 68% confidence intervals.
Spectra of detectors 1 to 6 were used.

Fitting model μa;scalp μ 0
s;scalp μa;skull μ 0

s;skull μa;GM μ 0
s;GM

Each subject’s own model −15∼17 −7∼7 −19∼42 −15∼12 −28∼21 −27∼78

Colin 27 −32∼92 −34∼13 −1∼162 −42∼70 −44∼57 −73∼42

Table 9 Average spectral errors of each subject’s fitting results using different detector combi-
nations. Only errors contributed by the fitting detectors are counted. The detector combination
chosen for each subject is shown in bold.

Detector combination

Subject

1 2 3 4 5

346 4.9% 5.1% 5.1% 25.1% 22.0%

1234 7.1% 26.3% 13.2% 9.5% 7.2%

2345 11.9% 37.5% 14.8% 7.3% 18.4%

12345 11.9% 35.5% 19% 10.2% 17.9%

123456 11.3% 32.8% 19.3% 29.3% 29.2%
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the 20 fitting results to the range between 0 and 1. Normalizing the OP errors enabled combining
results of the 1890 test spectra sets since errors in OPs varied substantially across the test data.
Afterward, the normalized OP errors of the fitting result with the same spectral error ranking
from each of the 1890 test spectra sets were compiled together. Figure 9 shows a boxplot of
normalized OP errors from results of all the 1890 test spectra sets to compare the 20 fitting
results ranked according to spectral errors. It can be seen that the normalized OP errors are

Fig. 7 Comparison of the quantified skull (a) μa and (b) μ 0
s of subject 1 to the literature reported

OPs.34,42–44

Fig. 8 The fitted OPs and the literature reported value (a) μa;scalp,
34,45–47 (b) μa;skull,

34,42–44

(c) μa;GM,
17,34,43,48,49 (d) μ 0

s;scalp,
34,46,47,50 (e) μ 0

s;skull,
34,42–44 and (f) μ 0

s;GM.
17,34,35,43,48,49 The range with

a 68% confidence level for each OP is shown in shades.
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smaller in fitting results with smaller spectral errors. The result suggests that choosing the fitting
result with the smallest spectral error leads to overall smaller errors in the six estimated OPs.

To investigate sources of errors in quantified OPs, we also fitted the same 135 sets of simu-
lated test spectra without added noise. Ranges of errors in OPs (shown in Table S2) were not
significantly lower than those with added spectral noise (Table 7). Since the test spectra were
generated using the same ANN as used in the iterative curve fitting, ideally a perfect fit should be
achievable. However, the average spectral error of test spectra fitting results was 1.78% rather
than 0%. This is probably caused by noise of MC simulations, which the trained ANN models
also inherit. During iterative curve fitting the optimization algorithm needs to calculate partial
derivatives of the reflectance with respect to individual OPs to find the global minimum. As
shown in Fig. 10, the sensitivity of CW NIRS measurements to deep tissue OPs is very low,
which means that the reflectance hardly changes given a small perturbation in one OP. When the
noise in MC-simulated or ANN output reflectance is comparable to or even larger than the reflec-
tance changes due to the small perturbation in an OP, the ability of iterative curve fitting to find
the global minimum could be hindered. See Fig. S6 for an example of trends in the ANN output
reflectance at the six SDSs when only one of the six OPs varies and the other OPs remain con-
stant. It can be seen that the cases with low sensitivity (all SDSs in the case of μ 0

s;GM and short
SDSs in cases of μa;GM and μ 0

s;skull) show rugged or not monotonic trends in the reflectance with
varying OP values. If the sensitivity of measured NIRS data to deep tissue OPs could be
improved, e.g., using TR or FD NIRS systems, the influence of MC noise and ANN output
errors could be reduced, and the errors of the fitted OPs may be improved.

The comparison of the fitted OPs and the literature reported values is shown in Fig. 8. All
OPs except for μ 0

s;scalp are within the ranges reported in the literature. Although μ 0
s;scalp is much

lower than the literature reported values, μa;scalp is not overestimated. Therefore, the underes-
timation of μ 0

s;scalp is not due to cross-talk between μa;scalp and μ
0
s;scalp. Considering that the SDSs

used in this study ranged from 0.8 to 4.5 cm and the spatial resolution of the 3D model was
relatively low with a 0.93-mm edge length, the scalp was not segmented into finer layers such as
epidermis, dermis, and subcutaneous tissue. The scattering phase functions used in MC simu-
lations were set to the conventional Henyey–Greenstein phase function with a constant
anisotropy factor. Quantification of μ 0

s;scalp could be improved by detecting spectra at shorter
SDS and using more realistic structural and optical parameters for skin.

Fig. 9 Boxplot of normalized OP errors to compare the 20 fitting results ranked according to spec-
tral errors. The results shown were from fitting the 1890 test spectra sets using detectors 1 to 6,
and similar results were obtained from choosing other detector combinations.
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It is worth mentioning that the quantified μa;scalp, μa;skull, μ 0
s;skull, and μa;GM show high var-

iabilities among subjects even considering the uncertainties shown in Fig. 8. The confidence
interval for μ 0

s;GM is too large, which prevents reliable quantification of μ 0
s;GM. The high inter-

subject variability underpins the importance of quantifying the tissue OPs of each subject to
more accurately calculate partial pathlengths for fNIRS applications or determine the fraction
of photon energy delivered to the brain for therapeutic applications.

4.2 Feasibility

The process of building a 3D head model is done manually and costs no more than 1 h.
Simulations of 2808 μ 0

s combinations in the lookup table for generating ANN training data cost
about 24 h using 7 NVIDIAGeForce RTX 2080. The measurement of NIRS spectra can be done
in 1 h and can be done at the same time while the simulation is running. The generation of
training data from the lookup table can be done in 3 h. The training of ANN can be done
in 2 h. The fitting for one target spectra can be done in 4 min. The whole quantifying process
can be done within 2 days after taking the MRI scan.

4.3 Future Work

We use iterative curve fitting in this study, whose performance is affected by the smoothness of
the ANN output. Random noise in MC simulation results could be reduced using filtering
techniques.48 Using other optimization algorithms, e.g., genetic algorithm, which do not rely
on the gradient of the loss function might help reduce the number of multiple solutions.

The uncertainties of μa;GM and μ 0
s;GM are relatively large compared with the other OPs. To

improve the sensitivity of the GM OPs, one may consider using TR or FD NIRS systems, as in
Refs. 16–18. With the help of each subject’s own model and the precise MC simulations, the
accuracy of quantified OPs could be improved.

The edge length of one voxel in our voxel-based model is 0.93 mm, which is relatively large
compared with the 0.8 cm SDS. Tran et al.51 proposed a pipeline for generating mesh-based
models from MRI images with smooth surfaces for each layer. With a mesh-based MC simu-
lation tool, they showed that the travel distance of the photons in GM is overestimated compared
with the voxel-based model. This may affect the simulated reflectance spectra. Switching to the
mesh-based model may help improve the match between the real head and the model.

Fig. 10 Average sensitivity of detectors at various SDSs to (a) μa;scalp, (b) μa;skull, (c) μa;GM,
(d) μ 0

s;scalp, (e) μ
0
s;skull, and (f) μ 0

s;GM. Results were obtained from simulations using nine subjects’
head models.
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5 Conclusion

This study aimed to use a multidistance CW NIRS system to quantify the OPs of the scalp, skull
and GM in the human head in-vivo. MC simulations were performed to generate reflectance
spectra given OPs and a voxel-based tissue model of each subject’s head to improve the
consistency between the subject and the model. Lookup tables and white MC method were
employed to efficiently generate numerous data for training ANNs that replaced MC simulations
in iterative curve fitting of measured reflectance spectra. The average error between ANN out-
puts and corresponding MC simulations was under 10%. Iterative curve fitting was used to opti-
mize the solution. The curve fitting could be done in several minutes with the help of the ANNs.
We performed fittings on thousands of simulated test spectra to estimate the confidence interval
of each fitted OP. The OPs of the scalp, skull, and gray matter at the right forehead were quan-
tified for five subjects. The scalp μ 0

s was underestimated while the other OPs were within the
ranges reported in the literature. Differences in estimated OPs between different subjects are
larger than the confidence intervals, which suggests the importance of quantifying the OPs for
each subject.
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