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ABSTRACT. Significance: Machine learning models for the direct extraction of tissue parame-
ters from hyperspectral images have been extensively researched recently, as they
represent a faster alternative to the well-known iterative methods such as inverse
Monte Carlo and inverse adding-doubling (IAD).

Aim: We aim to develop a Bayesian neural network model for robust prediction of
physiological parameters from hyperspectral images.

Approach: We propose a two-component system for extracting physiological
parameters from hyperspectral images. First, our system models the relationship
between the measured spectra and the tissue parameters as a distribution rather
than a point estimate and is thus able to generate multiple possible solutions.
Second, the proposed tissue parameters are then refined using the neural network
that approximates the biological tissue model.

Results: The proposed model was tested on simulated and in vivo data. It outper-
formed current models with an overall mean absolute error of 0.0141 and can be
used as a faster alternative to the IAD algorithm.

Conclusions: Results suggest that Bayesian neural networks coupled with the
approximation of a biological tissue model can be used to reliably and accurately
extract tissue properties from hyperspectral images on the fly.
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1 Introduction
Hyperspectral imaging (HSI) is a technique that combines imaging and spectroscopy to measure
and collect spatially resolved spectra in a three-dimensional hypercube consisting of two spatial
and one spectral dimension.1 In medicine, HSI has recently been used as a promising, non-inva-
sive, and cost-effective technique for measuring various tissue properties related to physiology,
morphology, or structure.1 Based on the idea that specific diseases change the spectra,2 several
studies have reported on the usability of HSI for surgery, diagnosis, and therapy.1

To obtain the relevant tissue properties from medical hyperspectral images, light propagation
is usually performed in a specific biological tissue model. The most commonly used method is
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the inverse Monte Carlo (IMC),3 which is considered very accurate, albeit computationally
intensive.4,5 One way to reduce the computation time is to use simpler approaches such as the
inverse diffusion approximation,6 or the Beer–Lambert (BL) law.5,7 However, these methods are
generally less accurate. In contrast to the methods mentioned, inverse adding-doubling (IAD)8

has proven to provide a good balance between accuracy and computation speed. Although the
computation time can be significantly reduced using graphics processing units (GPUs)9 or by
approximating the forward model using a lookup table,10 these models are still not suitable for
real-time extraction of tissue properties from hyperspectral images.

As an alternative to the traditional approaches, machine learning (ML) has also been applied
to extract physiological properties from hyperspectral images, mainly to reduce computation
time. ML models are used either as part of a curve fitting process to approximate a forward
model,11 or they are used to directly estimate tissue properties from the observed spectra.12,13

However, despite recent advances in ML models for estimating physiological properties
from hyperspectral images, they are not yet widely used in clinical practice. Many authors
explored different ideas as to why the models suffer from performance degradation when used
on in vivo data. Chen and Tseng14 considered the size and complexity of the training dataset and
proposed building the training dataset by verifying that the different sets of optical properties do
not result in the same or similar spectra. Alternatively, multiple artificial neural networks (ANNs)
can be used,15 where the spectra are split into groups based on their shape, which are then used to
train individual neural networks. Compared with a single ANN, the average relative error of the
reduced scattering coefficient was reduced from 4.1% to 2.9%, whereas the average relative error
of the absorption was reduced from 9.5% to 6.1%. Fredriksson et al.16 used an ANN for direct
estimation of oxygen saturation and hemoglobin concentration by trying to model the noise of
the HSI system. They proposed a noise model consisting of measurement noise, residual noise,
and color uncertainty. Manojlović et al.17 evaluated commonly used ML algorithms for direct
extraction of physiological properties of human skin. In this study, it has been shown that the
differences in the results of a simulated and an in vivo dataset are not only caused by the noise but
also by the surface topography. Scarbrough et al.18 performed an in-depth analysis of ML model
performance by identifying three main types of use errors that can occur when measuring diffuse
reflectance spectra: noise, wavelength miscalibrations, and spectral intensity variations. They
proposed to incorporate these use errors into the training and test dataset by modifying the signal
with a combination of Gaussian noise, rotation, shift, scaling, and compression. Finally, Ezhov
et al.19 compared two different strategies to create the training dataset. In the first strategy,
synthetic data were used to train the ML models, whereas in the second strategy, the ML models
were trained on real spectra for which the parameters were obtained using traditional least
squares fitting. Results have shown that training the ML models using the second strategy out-
performs the ML models trained only on the synthetic data. However, training on real data is
not always possible, especially in cases where the tissue model is complex or the number of
volunteers from which the spectra were extracted is small.

In this study, we propose a different approach to obtain a more robust model trained on the
dataset simulated using adding-doubling (AD). First, we propose to transform the original input
signal using random Fourier features (RFFs).20 Next, we use a Bayesian neural network (BNN)
instead of the commonly used ANN, allowing us to obtain multiple possible solutions. Finally,
we introduce an additional neural network that is trained to approximate AD. This component
not only allows us to select the parameters for which the spectra generated by the forward model
have a better alignment with measured spectra, but it is also possible to immediately recognize
spectra for which the model does not provide a satisfactory result and fall back on traditional and
more accurate methods.

To summarize, the main contributions of this paper are the following:

1. We propose a random Fourier feature–based Bayesian neural network (RFF + BNN) to
model the relationship between the measured spectra and the physiological skin param-
eters and show that it produces more robust solutions in comparison with the ANN or one-
dimensional convolutional neural network (1D-CNN) trained on raw spectra.

2. The proposed model is trained on uniformly sampled simulated spectra with minimum
prior knowledge of the actual properties of the observed tissue and without introducing
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use errors into the training process, making it easily adaptable to different tissue types
while also retaining robustness.

3. We propose to use a neural network approximating the forward model (F-NN) to select the
best-fitted sampled parameters.

4. The proposed method does not require iterative curve fitting, so it can be easily parallelized
on modern GPU architectures.

2 Methods

2.1 Two-Layer Skin Model
In this study, we consider a two-layer model of human skin with 11 parameters proposed in the
previous work by Tomaničc et al.,21 as shown in Fig. 1. To model the propagation of light through
the skin model, we use the IAD algorithm,8,21,22 which proves to be much faster than the com-
monly used IMC, with the spectra agreement on the fourth decimal place. To apply the IAD to the
skin model in Fig. 1, the absorption coefficients for the epidermis (μa;epi) and dermis (μa;der) as
well as the scattering coefficient (μ 0

s), the refractive index (n), and the anisotropy factor (g) must
be calculated.

The absorption coefficient of the epidermis is calculated using the following equation:21,23,24

EQ-TARGET;temp:intralink-;e001;117;524μa;epi ¼ fmμa;m þ μa;base: (1)

As can be seen, the absorption coefficient of the epidermis is the sum of the melanin absorp-
tion coefficient (μa;m) and the baseline absorption of the bloodless skin (μa;base), which is given by
the following equations:

EQ-TARGET;temp:intralink-;e002;117;464μa;m ¼ 6.6 · 1011 cm−1
�

λ

nm

�
−3.33

; (2)

EQ-TARGET;temp:intralink-;e003;117;417μa;base ¼ 0.244 cm−1 þ 85.3 cm−1 · e−
λ−154 nm
66.2 nm ; (3)

where λ is the wavelength in nanometers, and fm is the volume fraction of melanin, as described
in Table 2. To calculate the absorption coefficient of the dermis μa;der, we use the following
equation:21,23

EQ-TARGET;temp:intralink-;e004;117;374μa;der ¼ fHbμa;Hb þ fHbO2
μa;HbO2

þ fbrubμa;brub þ fCOμa;CO þ fCOO2
μa;COO2

þ μa;base; (4)

where fHb, fHbO2
, fbrub, fCO, and fCOO2

are described in Table 2, and the μa;Hb, μa;HbO2
, μa;brub,

μa;CO, and μa;COO2
are the associated absorption coefficients. The absorption coefficients for

melanin and hemoglobin were sourced from a database compiled by Jacques and Prahl.25

Bilirubin absorption coefficients were obtained from Bydlon et al.,26 and cytochrome C oxidase
absorption coefficients were obtained from Mason et al.27 The scattering coefficient is the same
for both the epidermis and dermis and is calculated using the following expression:21

EQ-TARGET;temp:intralink-;e005;117;277μ 0
s ¼ a

�
fRay

�
λ

500 nm

�
−4

þð1 − fRayÞ
�

λ

500 nm

�
−b
�
: (5)

To calculate the refractive index n, we use the following equation:5,21,28

EQ-TARGET;temp:intralink-;e006;117;231n ¼ 1.309 − 4.346 · 102λ−2 þ 1.6065 · 109λ−4 − 1.2811 · 1014λ−6: (6)

Finally, the expression to calculate the anisotropy factor g is given in the following equation:21,29

EQ-TARGET;temp:intralink-;e007;117;196g ¼ 0.62þ 29 nm−1 · 10−5λ: (7)

Fig. 1 Two-layer skin model consisting of epidermis and dermis with a total of 11 physiological
parameters used in our study. Adopted from Tomanič et al.21
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To simplify the fitting process, we set the thickness of the epidermis depi, the dermis dder,
the fraction of Rayleigh scattered light fRay, and the Mie scattering power b to constant values,
as shown in Table 1. Other parameters that will be predicted together with their description and
boundary values are shown in Table 2.

2.2 Spectra Simulation and In Vivo Data Acquisition
In vivo data were collected by acquiring an image of a forearm of 22 healthy volunteers of
Caucasian skin types (Fitzpatrick types II to III) using a custom-built hyperspectral imaging
system31 where the spectra from 21 volunteers were used to evaluate model accuracy and on
one subject the cuff test was performed to additionally evaluate if the model detects a change
in blood oxygenation during the experiment. All subjects gave informed consent. The experi-
mental protocol was approved by the Slovenian National Medical Ethics Committee (0120-629/
2016-3; KME 66/01/17) and conforms to the principles expressed in the Declaration of Helsinki.
The original data were collected in the spectral range 400 to 1000 nm and were then normalized
using the following equation:1

EQ-TARGET;temp:intralink-;e008;114;291Iref ¼
Iraw − Idark
Iwhite − Idark

; (8)

where the measured Iraw is the raw intensity; Idark is the dark current intensity, which was mea-
sured when the camera shutter was closed; and Iwhite is the standard white reference intensity.
Finally, the spectral range was reduced to 430 to 750 nm with a 1-nm step, resulting in 321
spectral bands. In Fig. 2, we show the three selected spectral bands with three reflectance mea-
surements taken from different sites as well as the RGB reconstructed image. In addition, as the
HSI system performs pushbroom scanning, visual artifacts can occur due to slight hand move-
ments. This can be seen by observing the upper half of the spectral band at 410 nm, which is
marked with a red box.

To obtain the parameters from the observed spectra, IAD was used together with the model
described in Sec. 2.1. The IAD algorithm starts from the initial estimate of the tissue parameters
and then performs an iterative curve fitting to obtain the tissue parameters for which the fitted
spectra are as close as possible to the measured ones.21 The Levenberg–Marquardt algorithm was
used to perform the fitting, with the maximum number of iterations set to 200.21 In Fig. 3,
we show four randomly selected measured spectra and their respective IAD-fitted counterparts.
As can be seen in the figure, IAD yields a smooth spectrum, whereas the measured spectra
contain noise, especially in the 650 to 750 nm range. As demonstrated in our previous work,21

Table 1 Values of fixed model parameters.

Parameter b (−) fRay (−) depi (cm) dder (cm)

Value 1.22,23 1 × 10−723 0.015,30 15

Table 2 Description and boundary values of simulated model physiological parameters.

Parameter Description Minimum Maximum

fm (−) Volume fraction of melanin 0.001 0.05

fHb (−) Volume fraction of deoxyhemoglobin 0.001 0.05

fHbO2
(−) Volume fraction of oxyhemoglobin 0.001 0.05

f brub (mM) Millimolar concentration of bilirubin 1 × 10−7 0.1

fCO (mM) Millimolar concentrations of reduced cytochrome C oxidase 1 × 10−7 2

fCOO2
(mM) Millimolar concentration oxidized cytochrome C oxidase 1 × 10−7 2

a ( 1
cm) Scattering coefficient at 500 nm 20 80
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Fig. 3 Measured spectra and their respective IAD-fitted spectra for four randomly selected
instances.

Fig. 2 Three selected spectral bands (a). RGB image extracted from the hyperspectral image (b).
Three selected measured reflectance spectra (c).
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the IAD algorithm is robust and accurate, having an accuracy within 2% of the gold standard
IMCmethods. Therefore, the fitted spectra agree well with the measured spectra because the IAD
algorithm is capable of modeling all complexities of human skin. However, the parameter fitting
problem has no unique solution and is non-linear, which makes it difficult to obtain the param-
eters directly from the spectra without imposing constraints, as already described in Sec. 1.

In this study, we assumed that training on in vivo data could potentially be expensive and
would be highly dependent on the observed tissue. Therefore, we simulated 70,000 spectra using
the model described in Sec. 2.1, of which one half was used for Bayesian inference, and the other
half was used to train the F-NN. As the parameters described in Table 2 spanned different orders
of magnitude, we normalized them in the range [0,1].

2.3 Proposed Model
We consider the problem of direct extraction of physiological parameters from the diffuse reflec-
tance spectra. As the measured diffuse reflectance spectra from which we want to extract tissue
parameters are noisy, and there is no single best fit due to the ill-posedness of the IAD, we
propose to model the relationship between the spectra and the parameters as a distribution instead
of making a point estimate. The proposed model is shown in Fig. 4. As can be seen in the figure,
the model consists of two main components. The first component is the Bayesian neural network,
which takes the transformed input spectra and produces the instances of tissue parameters given
the observed spectra. Next, F-NN is used to convert the sampled tissue parameters back into
spectra and compare them with the measured spectra. The parameters for which the F-NN
predicted spectra have the lowest mean absolute error (MAE) are used as output. In Sec. 2.3.2,
we discuss all the decisions made to construct the BNN, whereas in Sec. 2.3.3, we discuss the
parameterization of the F-NN model.

Fig. 4 Proposed model architecture.
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2.3.1 Random Fourier features

We start this section with the assumption that the relationship between spectra and physiological
parameters cannot be efficiently described as the linear combination of the reflectance values at
specific wavelengths. Therefore, non-linear transformations have to be used. This can be done
either directly, e.g., using the NNs, or implicitly, as it is used in Gaussian process regression or
support vector machines (SVMs). Although the SVMs are used for HSI classification problems,1

support vector regression32 is almost never used for regression tasks for the extraction of physio-
logical parameters from hyperspectral images. We hypothesize that the main reason for this is the
poor scalability of those models on larger datasets.

By considering the good performance of kernel-based methods for HSI classification tasks
and their poor scalability for larger datasets, we are interested in the mapping of the input spectra
x in a high-dimensional space such that the inner product of transformed vectors approximates
kernel function k

EQ-TARGET;temp:intralink-;e009;117;573kðxi; xjÞ ¼ hψðxiÞ;ψðxjÞi ≈ ϕðxiÞTϕðxjÞ: (9)

One way to perform such non-linear transformation is RFFs.20 In this study, we approxi-
mated the Gaussian kernel using the following scheme:
EQ-TARGET;temp:intralink-;e010;117;524

ω ∼N ð0; IÞ;
b ∼ Uniformð0;2πÞ;

ϕωðxÞ ¼
ffiffiffiffi
2

D

r
½ cosðωT

1xþ b1Þ : : : cosðω⊤
Dxþ bDÞ �T; (10)

where x is the spectrum, and ϕðxÞ is the transformation function. As it can be seen from Eq. (10),
ϕðxiÞ can be obtained by concatenating zωðxÞ ¼

ffiffiffi
2

p
cosðωT

i xþ biÞ D times and normalizing
each component by

ffiffiffiffi
D

p
.

2.3.2 Bayesian neural network

When it comes to modeling the relation between the spectra and the tissue parameters, ANNs
have been shown to outperform alternative models such as random forests (RFs) and generalized
linear models.12 However, given that in practice, the observed spectrum can be noisy or affected
by the use errors,18 and it is not guaranteed that the mentioned models will always produce
plausible parameter estimates.

BNNs33,34 are an extension to ANNs in which the weights are treated as probability distri-
butions, thus allowing us to obtain multiple predictions given the observed spectra. We start by
defining model likelihood as a normal distribution having homoscedastic variance σ2

EQ-TARGET;temp:intralink-;e011;117;279Pðyjx;W; σ2Þ ¼
YN
i¼1

N ðfWðϕðxnÞÞ; σ2IÞ; (11)

where x is the spectra, y is the physiological parameters, and W is the neural network weights.
Next, for a dataset of spectra/parameters pairs D ¼ fx; yg, we are interested in obtaining the
posterior

EQ-TARGET;temp:intralink-;e012;117;201PðW; σ2jDÞ ¼ Pðyjx;W; σ2Þ · PðWÞ · Pðσ2Þ
PðDÞ : (12)

Finally, we sample from the posterior predictive distribution to obtain the parameter
candidates:

EQ-TARGET;temp:intralink-;e013;117;138PðynewjxnewÞ ¼
Z

Pðynewjxnew;W; σ2Þ · PðW; σ2jDÞdW dσ2: (13)

When it comes to the network weights prior PðWÞ, we chose normal distribution with fixed
variance PðWÞ ¼ N ð0; σ2wIÞ which is most commonly used in practice,35 and for the variance
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prior Pðσ2Þ, we selected σ2 ∼ InverseGammað0.5; 0.1Þ, with a belief that small variance values
are more likely while still allowing for the possibility of large variance values.

In this paper, we used a BNN consisting of a single hidden layer with 512 neurons and the
ReLU activation function. To perform the Bayesian inference, we used black box variational
inference (BBVI) implemented in Pyro36 with mean field Gaussian as the variational distribution.
BBVI was performed with batch size 100 for 150 epochs using Adam optimizer, where for the
first 100 epochs, the learning rate was set to 10−3, and for the last 50 epochs, the learning rate was
lowered to 10−4. In addition, we used gradient clipping with a norm set to 5. Before making
predictions, we sampled 500W; σ2 pairs, meaning that the 500 forward passes will be done for
each spectrum xnew. Finally, although the range of the parameters is limited in the simulated
dataset, there is no guarantee that the proposed BNN predictions will always be positive.
Therefore, if negative parameters are inferred, we set them to zero in the postprocessing stage.

2.3.3 F-NN

As the BNN outputs multiple solutions for a given spectrum, we are interested in building a
model that can quickly verify how the parameters predicted by BNN fit the observed spectrum.
Although the forward AD is much faster and less resource-intensive than the MC, it is still not
suitable for near real-time use cases, especially for multi-layered tissue models. Based on the
previous work, which had shown that ANNs11,37 achieve high accuracy as an approximator for a
forward model, we used standard feed-forward ANN with one hidden layer. Therefore, to select
the best solution from the candidate outputs by the RFF + BNN model, we trained an F-NN that
maps predicted parameters and outputs the spectra. The network was trained on simulated data
with the normalized tissue parameters as input and the spectra as output. This model is then used to
select the parameters that result in the best-fitting spectra, i.e., to minimize the MAE between the
measured and F-NN fitted spectra. As the forward problem is generally easier to solve, in contrast
with the inverse mapping ML models and BNNs, we started building our model consisting of a
single hidden layer of 256 neurons, ReLU activation, and an output layer having 321 neurons with
the dropout with the probability of 0.2 between the hidden and output layer. However, we noticed
that the F-NN model does not always produce smooth spectra, and therefore, we added an addi-
tional convolutional layer on top of the output layer. It consists of a single filter with a size of 15.
This adjustment not only produced smoother spectra but also improved overall results when
combined with RFF + BNN. All other hyperparameters (number of epochs, batch size, and opti-
mizer) were used as in Sec. 2.3.2. In cases where the tissue model is much simpler and can be
modeled using simple equations such as BL law,19 we argue there is no need to train an F-NN.

3 Experiments and Discussion

3.1 Experiments on Simulated Data
In this section, we describe the experiments and discuss the simulated dataset. As already men-
tioned, this study assumes that the real data will not be used in a training process. In contrast with
our previous study,17 here, we assume that the range for most of the real parameters is known and
that the surfaces are mostly flat, i.e., cosine of the surface inclination angle is close to 1. These
assumptions about the real data simplify the problem, making it easier to achieve good predictive
performance by uniformly sampling simulated parameters. We evaluate parameter estimation
performance using MAE, which is more robust to outliers than the root mean squared error.

The first step in the process of obtaining acceptable results is to select the appropriate model
architecture for mapping the observed spectra to parameter values. Currently, the baseline archi-
tecture for parameter estimation from raw spectra is based on ANNs.12,14 We also consider a
much simpler ridge regression model as well as the more complex 1D-CNN model.38 In addition,
we test the performance of the RFF-transformed input on ANN and ridge regression.

For ANNs, we selected an architecture consisting of a single hidden layer of 512 neurons
with a ReLU activation function. We additionally set the dropout with a probability of 0.2 for
regularization during training. 1D-CNN consists of three convolutional layers with 64 filters of
size 3 with max-pooling of size 2 applied after each convolutional layer. Finally, features from the
convolutional layers are passed to the fully connected layer of dimension 512. All neural network
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models (ANN, RFF-NN, and 1D-CNN) were trained by minimizing the mean squared error use.
Similarly to the BNN inference already described in Sec. 2.3.2, we used the Adam optimizer and
set the number of epochs to 150 where for the first 100 epochs, we trained the model using the
learning rate 0.001, and for the last 50 epochs, we lowered the learning rate to 0.0001. The batch
size for all NN-based models was set to 100. For the ridge regression model, we set the regu-
larization parameter α to 1, and the solution was obtained analytically. Finally, we set the dimen-
sionality of RFF to 1000. All hyperparameter values were selected based on previous experience
and trial and error approach because an extensive grid search would be too costly to perform.

In Table 3, we show the results of the 10-fold cross-validation using the simulated data. As
can be seen, all models perform well when tested on the simulated spectra without noise. ANN
with RFF transformed spectra (RFF + ANN) has the best performance while having less trainable
parameters than 1D-CNN. Also, it is interesting that the ridge regression models also perform
relatively well considering their simplicity. Taking these results into consideration, we select the
RFF-based ANN architecture as a baseline for building the BNN, whose performance is also
shown in Table 3. To obtain better insights into the overall fitting performance, we use the
AD to fit the spectra from the predicted parameters, which is shown in Table 4. As can be seen
from the table, all models achieve acceptable performance on clean simulated spectra. To better
visualize the results, we show the two randomly selected AD simulated spectra and their cor-
responding spectra predicted by the MLmodels in Fig. 5, where it can be seen that the parameters
from all models agree well with the simulated spectra.

Next, we test the robustness of all models by augmenting the spectra based on the recent
work by Scarbrough et al.18 where it was shown that the ML models were generally more robust
to Gaussian noise but less robust to signal scaling and rotation. Therefore, we augment the AD
simulated spectra by rotating each spectrum randomly by 5% on the tails, randomly shifting the
spectra for �10-nm wavelengths and adding Gaussian noise with mean 0 and standard deviation

Table 3 Comparison of the model MAE for a specific parameter on the simulated dataset.

Parameter Ridge RFF + ridge RFF + ANN ANN CNN RFF + BNN RFF + BNN + F-NN

fm 0.00213 0.00096 0.00032 0.00105 0.00051 0.00059 0.0012

fHb 0.00287 0.00189 0.00036 0.00103 0.00065 0.00084 0.0017

fHbO2
0.00392 0.00256 0.00042 0.00119 0.00067 0.00119 0.00283

f brub 0.00994 0.0079 0.00096 0.00255 0.00141 0.00366 0.00681

fCO 0.1585 0.11753 0.01781 0.04774 0.0275 0.05365 0.11081

fCOO2
0.19666 0.19413 0.02096 0.07619 0.02858 0.10858 0.1875

a 2.38826 1.35068 0.39932 1.05516 0.65191 0.68795 1.51752

Note: The best results are highlighted in bold.

Table 4 Comparison of the forward fitting model MAE on
simulated spectra.

Model MAE

RFF + BNN + F-NN 0.0077

RFF + ANN 0.0082

RFF + BNN 0.0086

1D-CNN 0.0086

RFF + ridge 0.0089

ANN 0.0094

Ridge 0.0114

Note: The best results are highlighted in bold.
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0.002 in the spectral range of 430 to 630 nm and Gaussian noise with mean 0 and standard
deviation 0.008 for the 631 to 750 range. We show an example of a randomly selected augmented
signal in Fig. 6. Although the augmented and simulated spectra look similar to Fig. 3, it is still not
guaranteed that all use errors will be covered by this experiment. Therefore, we trained all models
on the simulated spectra without augmentations and validated the performance on the augmented
spectra. As this problem is ill-posed, we are mainly interested in an overall fitting performance,
which is done using the ML estimated parameters, fitting the spectra using AD and observing
the overall MAE between the fitted and augmented spectra. In addition, we use the F-NN model
to fit the spectra to compare the forward models. In Table 5, we show the results of the 10-fold
cross-validation for a specific model. As was expected, when the augmentations are applied to
the spectra, differences among the results for different models become more obvious. Finally,
this experiment shows that there is a clear benefit of using BNNs as the RFF + BNN model with
F-NN selection obtained the best results.

3.2 Experiments on In Vivo Data
In this section, we show and discuss the results of the in vivo data. As shown in Fig. 3, measured
spectra contain noise, especially for wavelengths above 600 nm. Also, due to the ill-posed nature
of the problem, there is not a unique solution, and therefore, it is not enough to just compare the
ML models against the IAD (Table 6), but it is also required to observe the forward-fitted spectra
and compare them against the measured spectra (Table 7). Therefore, we analyze the results by
looking at both tables simultaneously. In addition, we are particularly interested in fm, fHb,
fHbO2

, and fbrub due to their importance for diagnostic purposes.

Fig. 5 Four randomly selected AD simulated spectra and their respective forward-fitted spectra
from ML models.
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For better visibility, in Table 6, we highlighted the best results with bold and the second-best
results with italics. If we compare the results on measured data with the results on the simulated
data from Table 3, it can be seen that the models perform much better on clean simulated data,
whereas using augmentations in validation is more realistic and closer to the results on in vivo
spectra. These results are also supported by the recent study by Scarbrough et al.18 Moreover,
although the classic NN models outperform the BNN-based models on simulated spectra, they
are still less robust when tested on in vivo spectra.

Fig. 6 Four randomly selected simulated signals with their respective augmented versions.

Table 5 Comparison of the forward fitting model MAE on
augmented simulated spectra.

Model MAE (AD) MAE (F-NN)

RFF + BNN + F-NN 0.0107 0.0072

RFF + BNN 0.0131 0.0115

RFF + ridge 0.0162 0.0149

RFF + ANN 0.0178 0.0176

1D-CNN 0.0187 0.0182

ANN 0.0201 0.0201

Ridge 0.0234 0.0217

Note: The best results are highlighted in bold.
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We first observe and analyze the results of commonly used algorithms trained on raw simu-
lated spectra, namely, ridge regression, ANN, and 1D-CNN. Ridge regression is obviously the
simplest model, and although it estimates fm relatively close to the IAD, all other parameters
are far away from the IAD, resulting in bad forward-fitted spectra, as it can be seen in Table 7.
Next, the ANN and 1D-CNN models have better results but also fail to achieve acceptable
overall performance. We believe that the main reason for such low overall performance lies
in bad MAE for fm. Importantly, transforming the data using RFFs improves the overall results.
This can be confirmed by looking at the good performance on fCOO2

and a, which are important
for good overall fitting, especially for the wavelengths larger than 650 nm. RFF + BNN + F-NN
produces results that are closest to the IAD for four out of seven parameters while also having
other parameters close to the best result. Finally, all BNN models achieve a high MAE for fHbO2

,
which is not the case for 1D-CNN. We argue that the main reason for this is that the 1D-CNN is
better at detecting changes in the signal shape for the 500 to 600 nm range. In the future, ML
models could possibly be improved either by building a hybrid model where both RFF + ANN
and 1D-CNN were combined or by considering only the 500- to 600-nm range for predicting
the fHbO2

.
Next, Fig. 7 shows the spatial distribution of MAE between fitted and measured spectra.

This was done first by estimating the parameters using the RFF + BNN + F-NN model and
then using the predicted parameters to estimate the spectra using AD and F-NN separately. The
main goal of this experiment was to obtain a better insight into the tissue regions where the model
performs poorly, but also to visually compare the difference between AD and F-NN forward
models. As can be seen from the figure, both F-NN and AD predict roughly the same regions
with high errors (MAE > 0.03). In addition, we show the three randomly selected spectra with

Table 6 Comparison of the models’ MAE for tissue parameters extracted from in vivo spectra.
The best and second-best results for each parameter are bold and italics, respectively.

Model fm fHb fHbO2
f brub fCO fCOO2

a

ANN 0.009815 0.006140 0.006801 0.052051 0.120164 0.244695 9.257428

RFF + BNN 0.005883 0.005906 0.008436 0.026313 0.143875 0.275963 8.172330

RFF + BNN + F-NN 0.004752 0.004616 0.007104 0.024946 0.133573 0.291012 7.777429

1D-CNN 0.010523 0.008642 0.005404 0.064111 0.103635 0.502473 8.780724

RFF + ANN 0.007106 0.006245 0.006989 0.036719 0.119059 0.235668 8.532389

RFF + ridge 0.007941 0.005507 0.010006 0.036934 0.107643 0.372919 8.550158

Ridge 0.006890 0.010886 0.009563 0.050608 0.110290 0.541280 12.862863

Table 7 Overall fitting performance on the in vivo spectra.

Model MAE

IAD 0.014933

RFF + BNN + F-NN 0.014107

RFF + BNN 0.019810

RFF + ANN 0.022633

RFF + ridge 0.024262

1D-CNN 0.028409

ANN 0.030921

Ridge 0.053462

Note: The best results are highlighted in bold.

Manojlović et al.: Robust estimation of skin physiological parameters. . .

Journal of Biomedical Optics 016004-12 January 2025 • Vol. 30(1)



the spectra estimated using F-NN and AD. As can be seen from the results, the models perform
poorly in the regions containing blood vessels. This behavior is expected because the spectra from
the blood vessels require increasing the intervals of certain parameters and possibly introducing
some parameters that were currently fixed (i.e., b). However, we believe that this would possibly
degrade the predictive performance for the parts of the skin where the model performs well.

Next, we performed a cuff test on a healthy volunteer, where a blood pressure cuff was
placed on the upper arm and inflated to 200 mmHg for ∼3 min. During this experiment, three
images were taken: before, during, and after the cuff test with the goal of estimating blood
oxygenation using the estimated parameters from the tissue model shown in Fig. 1, using the
following equations:

EQ-TARGET;temp:intralink-;e014;117;195StO2ð%Þ ¼ 100% ·
fHbO2

fHb þ fHbO2

: (14)

As it can be seen in Fig. 8, the model detects changes in the StO2 during the cuff test,
whereas the estimated fm is relatively stable.

Finally, we present the estimation speed of the models in Table 8. Model performance was
estimated on a workstation consisting of two Intel® Xeon® Processors E5-2620 v4 CPUs,
128 GB RAM, and three GeForce RTX 2080 Ti graphics cards. Before the test, all spectra were
loaded into the memory, and preprocessing was not taken into consideration when measuring
time. RFF + BNN and NN models were run on GPU, whereas the ridge regression and RFF were
calculated on CPU. As can be seen, the RFF + BNN model has a much lower estimation time in

Fig. 7 (a) Spatial distribution of errors between measured spectra and spectra estimated using AD
or predicted using F-NN from the parameters predicted by the RFF + BNN + F-NNmodel. (b) Three
selected measured spectra with their AD and F-NN estimated spectra from (1) normal skin, (2) skin
containing hairs, and (3) blood vessels.
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comparison with the IAD. However, it is also not as fast as the NN-based models because it has to
perform multiple forward passes and select the best fit using F-NN. During the measurements,
we identified that the multiple forward passes took roughly 80% of the time, meaning that the
performance can be possibly improved by considering a smaller model and performing the multi-
ple forward passes in parallel. In addition, as the RFF + BNNmodel outputs multiple predictions,
meaning that multiple forward passes through the NN are required, a hyperspectral image with
high spatial resolution could not be processed in a single step but requires spectra to be organized
into multiple batches.

The main limitation of this study is the relatively homogeneous cohort consisting of 22
healthy volunteers with Fitzpatrick skin types II to III. Although the cuff test was used to evaluate
the changes in tissue properties, it is not guaranteed that the model will correctly predict abnor-
mal physical states such as dermatitis or melanoma. However, we argue that it is possible that
such abnormalities will have a large F-NN approximation error, similar to those shown in Fig. 7.

Fig. 8 (a) Reconstructed RGB images. (b) RFF + BNN + F-NN estimated StO2. (c) RFF + BNN +
F-NN estimated f m .

Table 8 Comparison of the time in microseconds required to estimate the parameters of a single
spectrum: for IAD, RFF + BNN + F-NN, N-based models, and RFF + ridge model.

IAD RFF + BNN + F-NN ANN–CNN RFF + ridge

Time (μs) 3.6 × 105 1.1 × 103 94 to 96 140

Note: The best results are highlighted in bold.
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Finally, in our previous study,17 one of the limitations was the usage of the Gaussian mixture
model (GMM) to sample realistic parameter combinations that will then be used to simulate
spectra using AD. Using this approach, it was necessary to have at least one IAD-fitted image
on which the GMM could be trained. As the surface topography and the common use errors
described in previous chapters could affect IAD performance, there is no guarantee that all
GMM sampled parameters would be realistic. Therefore, to avoid this limitation, it is better
to build a simulated dataset based on uniform sampling but with a much smaller range for
specific parameters. In other words, sampling the fHb and fHbO2

in the range of [0.001, 0.05]
rather than [0.001, 0.1] resulted in a better performance and removed the need to use GMM-
based sampling.

4 Conclusion and Future Work
In this study, we proposed a Bayesian neural network to solve the problem of direct extraction of
physiological parameters from the diffuse reflectance spectra. All models were trained on the
simulated spectra and evaluated on clean simulated spectra, augmented simulated spectra, and
in vivo spectra obtained from the forearms of 22 healthy volunteers where the images from
21 volunteers were used to evaluate models and on one healthy volunteer a cuff test was per-
formed to observe if the proposed model detects changes in blood oxygenation. The results have
shown that using the RFF-transformed spectra generally improves the fitting results, whereas
using the BNN with the F-NN to select the best fitting spectra leads to results that generally
provide almost the same fitting results as IAD.

Although the results on the simulated data were generally acceptable for almost all classic
ML models, the performance generally deteriorated when applied to the measured data, which
can generally contain noise and use errors already described in the previous chapters. Therefore,
we argue that it is not sufficient to test the models only on raw simulated spectra but is also
necessary to test the robustness of the model, at least on the augmented simulated spectra,
if the in vivo data are not currently available. Furthermore, as the problem is ill-posed in general,
we argue that the overall fitting performance should be evaluated together with the performance
for a particular parameter.

Although the results look promising, there are several directions that could be pursued to
improve the results even further. First, as the hyperspectral images are larger than the regular
RGB images, and the RFF-transformed spectra are even larger than the original HSI dimension-
ality, one would need to experiment with dimensionality reduction techniques, such as principal
component analysis, to reduce the hyperspectral image size. Moreover, we believe that model
performance could be further improved if the patches or whole images were considered as
ML model input. As acquiring a large dataset of hyperspectral images is difficult, it would be
necessary to propose a method to simulate patches or even whole tissues. Nevertheless, this work
lays the foundation for future research on the application of simulation-based inference39 to
biomedical HSI.
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