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Abstract. Single-photon sensitive image sensors have recently gained popularity in passive
imaging applications where the goal is to capture photon flux (brightness) values of different
scene points in the presence of challenging lighting conditions and scene motion. Recent
work has shown that high-speed bursts of single-photon timestamp information captured using
a single-photon avalanche diode camera can be used to estimate and correct for scene motion
thereby improving signal-to-noise ratio and reducing motion blur artifacts. We perform a com-
parison of various design choices in the processing pipeline used for noise reduction, motion
compensation, and upsampling of single-photon timestamp frames. We consider various
pixelwise noise reduction techniques in combination with state-of-the-art deep neural network
upscaling algorithms to super-resolve intensity images formed with single-photon timestamp
data. We explore the trade space of motion blur and signal noise in various scenes with different
motion content. Using real data captured with a hardware prototype, we achieved super-
resolution reconstruction at frame rates up to 65.8 kHz (native sampling rate of the sensor) and
captured videos of fast-moving objects. The best reconstruction is obtained with the motion
compensation approach, which achieves a structural similarity (SSIM) of about 0.67 for fast-
moving rigid objects. We are able to reconstruct subpixel resolution. These results show the
relative superiority of our motion compensation compared to other approaches that do not exceed
an SSIM of 0.5. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0
International License. Distribution or reproduction of this work in whole or in part requires full attribution
of the original publication, including its DOI. [DOI: 10.1117/1.JEI.31.3.033042]
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1 Introduction

In recent years, single photon-counting avalanche diode (SPAD) sensors have gained popularity
for use in various optronic sensing applications due to their extreme sensitivity and the ability to
precisely measure the time of arrival of individual photons. SPAD sensors can be integrated
and manufactured inexpensively in standardized semiconductor manufacturing processes with
a wide range of pixel array sizes, from single pixel detectors to megapixel SPAD arrays.1–6

Often, sensors and readout circuits are fabricated side-by-side on the same chip, representing
a high degree of integration and resulting in short signal propagation times. Pixel fill-factors can
be improved through the use of three-dimensional (3D)-stacking and microlens arrays. SPAD
sensors have an outstanding sensitivity, low dark count rates (DCR), and high time resolution.
These abilities are due to the detection of single-photon impacts triggering avalanche effects and
time tagging with a resolution of a few picoseconds.

Typically, SPAD sensors are used in conjunction with an active light source (e.g., a pulsed
laser) to record the photon timestamps in synchronization with the pulsed illumination source.
Each pixel thus observes the photon impingement time which is correlated to the scene response
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such as in fluorescence lifetime microscopy,7 range imaging LiDAR,8–11 super-resolution rang-
ing,12 transient,13,14 and nonline-of-sight sensing.15–18

The focus of this work is different. We consider the problem of passive imaging with a SPAD
camera where each SPAD pixel records photon timestamps due to ambient light naturally present
in the scene. These timestamps are not correlated with any active light source and are instead
recorded with respect to the SPAD camera’s frame start times. Although these passively acquired
photon timestamps do not provide information about the 3D scene structure, by exploiting the
Poisson timing statistics, it was recently shown19–22 that these passive timestamps provide scene
intensity information.

Recent publications focused on the passive sensing capabilities of single photon counting
devices by, for instance, restoring intensity images from binary photon detection23–28 for both
static and dynamic scenes. Furthermore, the timing ability of SPAD sensors was used to deter-
mine the physical intensity by estimation of the photon flux from the photon impingement
rate.19–22 In this approach, the time between photon events is determined from the mean event
time. It was shown that with photon flux measurements SPAD sensors are able to perform sens-
ing with high dynamic range.

Despite these promising features of extreme sensitivity and time resolution, current SPAD
camera arrays are severely limited in their spatial resolution and fill factor due to manufacturing
challenges. Moreover, the individual frames of passive photon timing data captured with SPAD
camera are extremely noisy. Therefore, there is a need to devise efficient computational algo-
rithms that can denoise SPAD photon frames and increase the spatial resolution of the captured
images. The goal of this paper is to present a thorough analysis of the various denoising and
super-resolution techniques adapted to single-photon timing information captured using low-
resolution SPAD cameras.

Our proposed photon timestamp processing pipeline is summarized in Fig. 1. The scene is
illuminated passively by an ambient light source. The SPAD camera captures frames of photon
timestamps at a high frame rate but with at most 1 photon per pixel. These are collapsed into
noisy but high-frame-rate intensity (photon flux) estimates. By a combination of denoising and
motion-alignment, these frames are summed to increase the overall signal-to-noise ratio (SNR)
while minimizing motion blur artifacts. Finally, the low-resolution images are upscaled by a
state-of-the-art super-resolution algorithm.

In prior work, we have demonstrated22 compensation of motion by accumulating photon
information along motion trajectories in these 3D (spatiotemporal) photon timestamp data sets.
Further, we have published some preliminary investigations on the application of deep neutral
network (DNN) image upscaling in a conference paper.29 Here, we focus mainly on the
comparison of the two different processing strategies that are motion compensation (MC) and
DNN upscaling and perform a detailed evaluation of the denoising and upscaling steps to obtain
super-resolution photon flux frames.

Fig. 1 A low-resolution but extremely sensitive SPAD camera captures photon timestamp frames
at many kHz. These frames are temporally accumulated over short timescales to estimate noisy
but blur-free photon flux (intensities). These noisy intensity frames are further denoised and accu-
mulated over spatiotemporal motion trajectories to prevent motion-blur. Finally, super-resolved
intensity images are be reconstructed from the denoised motion-blur-free image frames.
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2 Related Work

2.1 Passive Single-Photon Imaging

The passive single-photon imaging aspect is related to work discussing quanta image sensors,24–27

binary single photon intensities,28,30 low-noise sCMOS,31 and EMCCD32 cameras with low light
sensitivity. We consider SPAD-based imaging here because they provide much higher time
resolution compared with these other sensor technologies. Moreover, SPADs can be manufac-
tured cheaply as they are compatible with the CMOS photolithography processes.

2.2 Motion Deblurring

Motion deblurring is an ill-posed inverse problem. Conventional deblurring techniques pose this
as a deconvolution problem, where the blur kernel may be assumed to be known or can be
estimated from the image itself.33,34 Recent methods also use data driven approaches35 to handle
the ill-posedness.

The idea closest related to our work is burst photography where a rapid sequence of images
(usually around 10) are captured and merged after MC.27 Our method takes this idea to the
extreme limit where the burst is composed of single-photon frames.21,26

2.3 Super-Resolution and Image Upsampling

The task of image upscaling is a well-studied problem. Many methods use a subpixel movement
through deliberate changes in the position of the image plane36–39 or analyze in-scene motion40,41

for resolution enhancement through analysis of image sequences. For single image processing,
state-of-the-art methods apply data-driven approaches to train and employ deep neural networks
(DNNs)42 to obtain super-resolution images from low-resolution datasets. Several studies were
published refining, using, and comparing different approaches.43–50 Here, we leverage these
developments and apply them to the new kind of data provided by a single-photon camera.

3 Methods

Here, we describe the experimental setup and the data processing steps to obtain super-resolution
single-photon flux images from raw photon timestamp data frames. In Sec. 3.1, we describe
our experimental setup and the structure of the recorded data. We then explain the processing
pipeline, which consists of several steps, as described in Sec. 3.2. After capturing the data,
we estimate an instantaneous flux value at all pixels using a the maximum likelihood estimator
described in Sec. 3.2.1. We then use statistical noise filter to reduce the temporal noise described
in Sec. 3.2.2. At this point, an optional align and merge motion correction step can be applied in
case the scene contains moving objects or there was global motion due to camera-shake. We
describe MC in Sec. 3.2.4. Next, bad pixels are replaced, and finally a super-resolution network
is applied to obtain the final image (see Sec. 3.2.5). In the following section, we describe the
whole process in detail.

3.1 Experimental Setup and Data Acquisition

In our experimental setup, a scene is illuminated by ambient light that is generated by an uncor-
related continuous light source. As shown in Fig. 1, the reflected light is partly captured by a lens
to form an image on the camera sensor array. A computer is used to control and read-out the
camera and to store and process the recorded data.

Continuous illumination was generated by a scientific light source consisting of a 100-W
halogen light bulb and projection optics to form a homogeneous illumination field. The light
bulb was driven by a stabilized power supply which generates a constant driving current. In our
experiments, this current was set to relatively low levels between 6.5 and 7 A. The particular
values were chosen to adapt to changing sensing condition and scene reflectance.
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The reflected light was received by a PF32 camera (PhotonForce Ltd., Edinburgh, United
Kingdom) with 16 mm focal length lens and an aperture of f∕1.4. The PF32 camera has a silicon
detector array of 32 × 32 single photon-counting avalanche diodes (SPAD). These SPAD sensors
had an active area with a diameter of 6.95 μm, a pitch of 50 μm, and an optical fill factor of
1.5%. Moreover, the photon detection efficiency at 500 nm reaches a peak of 28%.51

The camera was read out with a frame rate of 65.8 kHz. However, on chip-level, the sensor
array was triggered, quenched, and read at a frequency of 2.5 MHz. Furthermore, the camera was
operated with an exposure time of 4 μs to increase the overall photon detection probability by
accumulating 10 sampling cycles in a single frame. Further camera details can be found in the
manufacturer documentation.51

Each sensor element can detect the advent of a single photon event. The time of an event was
measured within a sampling period of 57.3 ns with a 10-bit resolution of 1024 time bins and a bin
width Δtbin of 56 ps. The camera uses a reverse timing to record the event time as the waiting
time until the end of the measurement cycle. The sensing process is shown in Fig. 2.

During the experiments, we captured two scenes with different motion content: “rotating fan”
and “bursting balloon.” For each scene, we recorded data sets of 32 × 32 pixel positions and 5e5
samples (frames). For ease of use, recording and data analysis were performed on two different
computers. In principle, however, both processes can be integrated to run on a single machine.
Our implementation uses a combination of MATLAB52 (for capturing data from the camera over
USB3.0) and Python53 with OpenCV54,55 (for data analysis).

3.2 Data Processing Chain

Details of the data processing pipelines are shown in Figs. 3(a) and 3(b). Without MC, the pipe-
line follows four step process as illustrated in Fig. 3(a) as a row of gray-scale images. This data
processing chain first retrieves the position of all detected photons in the 32 × 32 × 500;000
dataset, pToF, estimates the photon flux for each single photon (estimate Φ) and noise is reduced
by applying a filter (see Sec. 3.2.2). We tested different linear and statistical noise filter. Then,
we correct the pixel values due to a previous determined dark current map (DCR pattern) and
apply a DNN approach to upscale the resulting data frames.

With MC applied, see Fig. 3(b), the data processing pipeline is bypassed through additional
processing steps [in Fig. 3(a) at � to ‡] and we compensate motion through an align and merge
process. Again, we scale the dataset to super-resolution, but we distinguish the opportunity to
scale either before or after MC.

Details of each processing step are now described below.

3.2.1 Photon flux estimation

In recent papers,19–22 the method of photon flux measurement was introduced using the timing
capability of single photon-counting avalanche diodes to estimate the photon flux as the rate at

Fig. 2 Each pixel in our SPAD array (PhotonForce PF32 camera) captures a stream of incident
photon timestamps; these timestamp frames are read-out at 65.8 kHz. The internal sampling rate
for each pixel is 2.5 MHz and we accumulate 10 sampling intervals which amounts to a 4 μs expo-
sure time for each raw photon frame.
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which photons arrive at the detector. Equation (1) states the photon flux estimate, ϕ̂, over m
sampled frames which is given as the reciprocal of the mean photon arrival time (t) within
the m sampled frames. Here, ti is the measured event time in the i’th sampling frame, while
ni ∈ ½0;1� indicates if a photon was detected. If no photon is detected, ti returns the measuring
cycle time and increases the overall waiting time between two photon events. We define n as the
number of detected photon events within the m sampling approaches:

EQ-TARGET;temp:intralink-;e001;116;362ϕ̂ ¼ 1

t̄
; with t ¼

P
m
i¼1 tiP
m
i¼1 ni

¼
P

m
i¼1 ti
n

; (1)

EQ-TARGET;temp:intralink-;e002;116;305with ti ¼
�
biΔtbinðforward samplingÞ;
ðNbins − biÞΔtbinðreverse samplingÞ: (2)

For an event read-out with forwardsampling, the event time ti equals simply the the bin
number (bi) times the sampling bin width (Δtbin), see Eq. (2). In the case of reverse sampling,
first, we have to convert the bin number by subtraction from the total number of bins Nbins,
as given in Eq. (2).

From Eq. (1), we can estimate the photon flux related to a single photon event (n → 1) called

the instantaneous photon flux ϕ̂inst:. The instantaneous flux estimator ϕ̂inst: is no longer defined as
the mean detection rate over a certain number of sampling cycles, but as the flux which persists
in the period between a previous p and the current detection event pþ δ, see Eqs. (3) and (4):

EQ-TARGET;temp:intralink-;e003;116;182ϕ̂inst:ðu; v; kÞ ≈
n→1

1

tinst:ðu; v; kÞ
; (3)

EQ-TARGET;temp:intralink-;e004;116;126with tinst:ðu; v; kÞ ¼
Xpþδ

i¼pþ1

tiðu; vÞ; δ ≥ 1 and k ∈�p; pþ δ�: (4)

For each detector position ðu; vÞ, we can extrapolate the photon flux to any instant S ¼ k ∈
�p; pþ δ� from the later single photon detection (pþ δ). Thus, we can obtain an estimation of

Fig. 3 The reconstruction algorithms follow a pipeline of different processing steps for (a) pixelwise
estimation of the photon flux (Φ), denoising (denoF lux ), correction of photon flux estimation errors
associated with dark current noise (DCR pattern), and upscaling by a DNN (upscaling). Optionally,
we can (b) compensate motion by estimating frame-to-frame motion and merging photon counts
along predetermined motion paths.
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the instantaneous photon flux for the whole detector array even if we do not have a photon
detection at every sensor element that instant.

3.2.2 Noise characteristics and noise reduction

Uncorrelated single photon detection is strongly affected by noise effects20 due to the Poisson
nature of the detection process, as illustrated in Fig. 4. Here, the noise characteristics are
shown for different level of photon flux. The target consisted of six patches (P1: : : P6) covered
with a diffuse reflecting coating (Permaflect®, Labsphere Inc.) of different reflectively
(R ∈ ½94%; : : : 5%�). Therefore, these patches represent a wide range of shades of gray that
include all coatings available at the time of the experiment. Figure 4(c) shows a histogram

of ϕ̂inst: for the measurements of a single pixel on each patch. The obtained count distributions
are specific for the camera used. Other SPAD cameras may have different active areas, DCR,
quantum efficiency, and reception optics which will impact the absolute values and the shape of
the count distribution.

We can fit these distribution functions by skewed normal distribution56 and observe that dif-
ferent photon flux levels can be distinguished and the shift between the different distribution
functions matches with the intensities or photon flux level coming from the target surface.
Further, in each sampling cycle, we can estimate to have between 1.47 and 0.08 photons,
NPhoton ¼ ΔtbinNbinsϕ, impinging each sensor element. The real number may be higher due
to the sensor’s quantum efficiency.

However, our photon flux estimation is strongly affected by noise. Thus, further processing is
needed to reduce the noise and to give a better representation of the photon flux in a single
instant. In our study, we have evaluated different noise filters which are pixelwise applied to
the estimated photon flux data:

• Gaussian average (GA): we calculate the convolution with a Gaussian kernel with radius ω
and window 8ω.

• Total variance regularization (TV): TV57 is an edge-preserving denoising method.58

In our analysis, we use the direct one-dimensional TV algorithm.59–61

• Change point fitting (CPF): As in Ref. 22, we use statistical change point detection62 to
analyze photon flux data with either the kernel based63,64 or pruned exact linear time
(PELT)65 algorithm. Then, the photon flux is fitted by the mean photon flux between two
consecutive change points.

We also evaluated further noise reduction approaches, such as moving average, bilateral, and
median filter, but we exclude these results as they do not significantly contribute to the overall
discussion.

Fig. 4 Single photon flux noise characteristics: (a) gray-scale target, (b) measured mean photon
flux, and (c) single pixel instantaneous photon flux distributions (500,000 samples).
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3.2.3 Correction of pixel values

After denoising temporally each pixel, we noticed a spatial pattern of high estimated photon flux
values regardless of the scene. Therefore, we measured the DCR of the SPAD array and iden-
tified the pixels which have a significant higher probability to fire without any impinging pho-
tons. We assumed that pixels with a dark rate count of more than 5% are bad pixels that will not
give accurate flux measurements. To get rid of these hot pixels, we apply a 3 × 3 median filter to
each frame and replace the wrong pixel values by the median value of its neighboring pixels.

3.2.4 Motion compensation

Motion in the observed scene can lead to significant blurring of edges and contours in the
restored image frames; therefore, we want to reduce these effects and follow an approach similar
to Ref. 22 for MC by aligning photon detection events through the data volume. The process is
illustrated in Fig. 3(b).

Into the MC algorithm, we pass in the denoised fluxes denoFlux (we use CPF for the denoise
method) and the unprocessed data pToF. We then find motion between successive frames using
either dense optical flow (openCV54 function calcopticalFlowFarneback) or a euclidean motion
model (openCV54 function findTransformECC). Then, we linearly interpolate the found motion
and apply it to the raw photon timestamps pToF this aligns the measurements to the next frame in
the sampled data set.

Then, we merge the aligned measurements into frames, we hold the counts and the average
time step separately to correctly estimate flux in later steps. Next, we estimate flux to get a new
set of motion compensated frames (frames). We then recursively find motion, align, and merge
frames, each step halving the number of frames, until we are left with one frame. This process
can be done with a moving window to get a full-frame rate video.

3.2.5 Upscaling to super-resolution

It is known that image upscaling can be done by application of convolutional neural networks.
There are several approaches published and their codes and even trained network are available.
In our approach, we used the upscaling function of OpenCV54 in Python. The upscaling algo-
rithm is based on a pretrained DNNs with a scaling factor of 4×, to scale 32 × 32 low-resolution
to 128 × 128 super-resolution frames. In our algorithm, we use the enhanced deep super-reso-
lution network approach from Lim et al.48

We also investigated upscaling prior to an MC step as in Ref. 22. In this approach, the raw
data are nearest-neighbor upscaled before applying align and merge MC. This gives sub-pixel
resolution because each SPAD pixel will sample along a continuous motion curve. The nearest-
neighbor upsampling allows photon data to be combined along these motion curves better than
working in the captured resolution. This technique allows SPADs to get around some of the
issues with low fill factors for scenes with motion.

4 Results

4.1 Simulated Results: Pixelwise Fitting

To compare the different three pixelwise noise reduction approaches (see Sec. 3.2.2), we sim-
ulate a simple square light pulse incident on a single pixel SPAD to represent an object moving
across a background. We are interested in the behavior of our filters for different motion speeds
and contrasts. Therefore, we vary the pulse width as an analogy to speed and the pulse contrast—
the ratio between the tallest and lowest point (set at 107) in the pulse.

We simulate photon detections of a 1024-bin SPAD sensor with 56 ps time resolution over
5000 sampled frames, for details see Appendix A, and denoise the photon timestamps with the
three noise reduction methods. An example of a simulated pulse and the results of each fitting
method is shown in Fig. 5(a). For each method, we try a variety of hyperparameters and use the
best hyperparameter for each contrast/duration pair to calculate the SNR for each fitting method.
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LetΦ ≔ ðϕ1; : : :ϕk; : : : Þ be the vector of the true photon flux incident on a pixel at sampling

frame k, and Φ̂fit ≔ ðbϕfit
1 ; : : : bϕfit

k ; : : : Þ be the vector of estimated fluxes found from a given fitting
method. We define SNR as28

EQ-TARGET;temp:intralink-;e005;116;446SNRðΦ; Φ̂fitÞ ¼ 10 log10

� kΦk22
kΦ − Φ̂fitk22

�
; (5)

where k · k22 represents the l2 norm.
To better understand how the fitting methods deal with the dynamics of the scene, we com-

pare the SNR from a fitted signal, SNRðΦ; Φ̂fitÞ, to the SNR given by averaging over all frames,

SNRðΦ; Φ̂AvgÞ. Where Φ̂Avg is a constant vector representing the average photon flux measured

and is calculated using all sampling frames in Eq. (1). By comparing SNRðΦ; Φ̂fitÞ to

SNRðΦ; Φ̂AvgÞ, we can calculate how much SNR improvement we get from fitting to motion
in the scene. The SNR improvement, ΔSNR, is given as

EQ-TARGET;temp:intralink-;e006;116;306ΔSNR ¼ SNRðΦ; Φ̂fitÞ − SNRðΦ; Φ̂AvgÞ: (6)

The SNR improvement results are shown in Fig. 5(b). The CPF did the best for all tested
scenarios, with TV fitting close behind. Both TV and CPF properly dealt with the constant case
(contrast = 1) by giving the same SNR as the full time average.

Gaussian averaging did worse than Φ̂Avg, for short durations (fast objects) and low contrast.
The GA struggles in these tough scenarios because it only can look at a small number of samples
which can cause inaccurate estimations at the level of the pulse, whereas both CPF and TV fitting
can adaptively average more samples.

The run times for each method are dependent on the choice of hyperparameter. In general,
Gaussian averaging took about 10 ms, TV took about 100 ms, and CPF took about 1s.

4.2 Experimental Results

In Fig. 6, the results of the pixelwise data processing and the MC are summarized and depicted as
a single frame for each scene and algorithm. The first and second rows show the results of the
“rotating fan” scene, and the third and fourth show the “bursting balloon” scene, respectively, at
single (32 × 32) and super-resolution (128 × 128), with each column representing a different

Fig. 5 Performance of different denoising strategies on simulated photon timestamp data.
(a) Example for ground truth (red) and denoised single pixel signal and (b) SNR improvement
ΔSNR [Eq. (6)] for different algorithms.
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reconstruction pipeline. In all frames, the logarithmic gray scale illustrates a photon flux of
about 106 − 108 cps.

In the first column, the application of the GA filter is shown. We had optimized the Gaussian
radius to trade the noise reduction ability against the tendency of motion blur. In our analysis, we
set this radius to ω ¼ 15 samples and the convolution kernel size to 8ω ¼ 120. Although both
a significant remaining noise component as well as an incipient motion blur can be observed,
this filter is quite effective. Shapes and letters can be recognized, but the ripping edge of the
bursting balloon is smeared due to significant motion blur. No clear contours can be seen here.

The results of the total variation (TV) filter are shown in the second column. We observe a
significant lower effect of noise and motion blur through out all scenes. Letters and shapes are
reconstructed in good quality. Only a slight amount of motion blur can be observed at the bal-
loon’s ripping edge. But, in contrast to the GA filter, now, the motion blur effect is much lower
and the edge can be observed clearly. In the third column, the CPF results show very low noise
effects and so far the highest contrast between bright and dark surfaces (letters and background).

The results of the MC algorithm are presented in the last three columns. In the fan scene,
we used the euclidean motion model to compensate motion, while for the balloon we used
optical flow analysis. Further, we tried out different scaling methods to obtain super-resolution
by combining prior and posterior scaling of the data sets with linear and SR-DNN methods.

A first MC approach works similarly to the pixelwise algorithms above. MC was used on the
datasets with native resolution and resulting frames were later scaled to 4× resolution by employ-
ing the pretrained DNN. The results of the two processing steps are shown in the fourth column.
In both scenarios, the impact of noise is significantly reduced. Further, shapes and the balloon’s
ripping edge are reconstructed well. However, the resolution of the letters on the fan appears to
be similar to the results of the previous pixelwise processing algorithms.

In a further MC approach, fifth column, we combined a linear scaling (2×) of the datasets
before application of MC and 2× DNN scaling. With this approach, it is possible to obtain effec-
tive noise reduction and a high contrast. Further, due to the prior scaling of the datasets, it is
possible to reveal subpixel information in areas of continuous motion that is, for instance,
the rotating fan. In these areas, we can identify details of the letters typeface66 such as the serifs

Fig. 6 Reconstructing various scenes with native (32 × 32) and super-resolution (128 × 128)
using pixelwise (GA, TV, CPF) and MC algorithms. We reconstruct the subpixel details of the
letters on the rotating fan blades (prescaled MC) and observe the fast motion of the busting balloon
(e.g., CPF).
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(in “I” and “L”), hairlines (in “S” and “L”), and bows (in “U” and “W”) which were not visible
before. On the other hand, in the balloon scene, we observe pixelated representation of areas with
no or slow motion (e.g., balloon surface and dropping dart). Here, the pixelwise processing
methods obtain much better resolutions.

Finally, in a the third MC approach (sixth column), we employed only the prescaling (4×) of
the datasets before application of MC. Again, it is possible to obtain effective noise reduction and
a high contrast. In the fan scene, again, we obtain very detailed subpixel resolution in areas with
continuous motion. For instance, the representation of the typefaces appears to be much clearer
than in the aforementioned approaches. However, the algorithm results are very pixelated in
areas with no or few motion (e.g., balloon body). Moreover, the ripping edge, although having
huge amount of motion, is reconstructed pixelated and does not appear clearly in the result-
ing frame.

Figures 7 and 8 show still images of videos illustrating our processing pipelines. Video 1
(Fig. 7) depicts the “bursting balloon” scene and shows raw timestamp frames, pixelwise
estimation of the instantaneous photon flux, and the super-resolution reconstruction using CPF
denoising and DNN upscaling. Video 2 (Fig. 8) presents reconstruction of the “rotating fan”
scene with prescaled MC.

5 Discussion

In our analysis, we have seen that we can apply various noise reduction and super-resolution
algorithms to passive single-photon timing data to obtain a super-resolution reconstruction of the
instantaneous photon flux. However, the quality of the reconstruction depends on the amount of
motion contained in the scene and the reconstruction filter applied. Nevertheless, it is possible to
obtain a reconstruction frame rate identical to the sampling frame rate. In our experimental data-
sets, we were able to reconstruct an original frame rate of 65.8 kHz. This rate is limited by
the achievable frame rate of the hardware used.

For further discussion, we focus on the super-resolution results obtained in the rotating fan
scene. An overview can be seen in Fig. 9, which shows two sets of magnified sections

Fig. 7 Video 1 showing reconstruction of “bursting balloon” scene with timestamp frames, esti-
mated flux, and super-resolution reconstruction with CPF + DNN (Video 1, MPEG, 1.4 MB [URL:
https://doi.org/10.1117/1.JEI.31.3.033042.1]).

Fig. 8 Video 2 showing reconstruction of “rotating fan” scene with timestamp frames, estimated
flux, and super-resolution reconstruction with prescaled MC (Video 2, MPEG, 1 MB [URL: https://
doi.org/10.1117/1.JEI.31.3.033042.2]).
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representing the fan blades with the letter “S” and “U.” It is obvious that very different
reconstruction qualities are acheived with the different algorithms. However, the algorithms
with 4× SR-DNN upscaling result in blurred reconstructions, while applying MC to prescaled
datasets achieves sharp reconstruction of subpixel information.

To compare the reconstruction performance of the different algorithms, we calculated the
structural similarity (SSIM)67,68 and mean square error (MSE) by comparison to a scene photo
(see Appendix B, Fig. 11). Both evaluation metrics were applied to the whole images and to
35 × 35 cut-out sections. For the comparison, we normalized the data using a min-max normali-
zation such as the MSE range from zero to one (MSE ∈ ½0;1�). By definition, the SSIM value
can range from 1 (good similarity) to −1. Due to the fact that we do not have a real ground truth,
but a very similar photo, we do not expect to obtain an SSIM of 1. For details of the SSIM
analysis process, see Appendix B.

For the different algorithms, we found SSIM ranging from 0.32 to 0.67 while the MSE values
are almost constant at 0.09� 0.04. The algorithms based on DNN upscaling after noise process-
ing (GA DNN, TV DNN, CPF DNN, and MC DNN) result in SSIM ∈ ½0.32; 0.5� with very
similar values for the different letters and the whole image. Significantly, better SSIM values
are obtained for MC employing prescaled data sets, SSIM ∈ ½0.46; 0.67�. The obtained values
are summarized in Fig. 10.

Fig. 9 Effect of MC and different denoising algorithms on super-resolution results. (a) Ground-
truth photograph of the object. (b)–(e) Super-resolution reconstruction using DNN scaling after
different noise reduction filters Gaussian averaging, total variation, change-point fitting, and
MC. (f)–(g) Prior linear data scaling with later MC.

Fig. 10 Image quality metric (SSIM) computed for different denoising methods of different
sections of the “rotating fan” scene for different reconstruction algorithms: DNN upscaling with
Gaussian averaging (GA DNN), total variation (TV DNN), change-point fitting (CPF DNN) and
motion compensation (MC DNN), and prescaled motion compensation (pre MC DNN, pre MC).
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6 Conclusion

In this paper, we demonstrated the use of a commercially available single photon counting
camera to measure the event times of passively acquired photons in the absence of any active
(time-correlated) light source. Reconstruction of the instantaneous photon flux at high sampling
rates was possible with an impingement of just Oð1Þ photons per sample. However, since this
initial estimate is strongly affected by noise and the spatial resolution of the sensor array is low,
we applied and compared various denoising and super-resolution strategies. In doing so, we were
able to reconstruct super-resolved images at a frame rate of 65.8 kHz, limited only by the native
frame rate of the camera.

Further, we have shown that SPAD sensors are more than just photon counters for range-
finders and time-correlated measurements. They can be used to measure real physical quantities
of light such as photon flux, which expresses the light intensity and thus the radiated energy
flux with physical accuracy. We believe that photon flux measurements can provide valuable
information, for example, in high-speed imaging which will have implications for a variety of
applications including scientific imaging and consumer machine vision applications.

In general, our algorithms do not use any assumptions about the physical properties of the
sensor and can therefore also be used for other sensors. Nevertheless, the use of other sensors
could lead to different results. For instance, the use of sensors with higher fill factor could lead to
higher spatial resolution, as we show in Appendix C. Furthermore, higher count rates could be
achieved with such sensors.

Finally, with our work, we hope to encourage hardware developers to implement the photon
flux estimation, motion correction, denoising, and super-resolution pipelines on the sensor chip
level. With a specialized photon flux hardware, we could dramatically reduce the amount of data
postprocessing required. In addition, such devices could also operate at much higher frame rates
up to several MHz. Although future photon counting devices will have much higher frame rates
and higher spatial resolution, our concept of MC will still be an interesting approach to reduce
the effects of motion blur and to achieve sub-pixel resolution.

7 Appendix A: Simulations

To quantitatively compare the pixelwise fitting algorithms, we simulate a single pixel with inci-
dent flux given by a single pulse wave at a randomly generated time. The pulse width represents
the motion speed while the ratio between the pulse height and background level represents the
contrast. We use 107 photons per second for the background. Our simulated pixel uses 1024 bins
each bin having width of 56 ps and measures for a total of 5000 frames.

We do the following to simulate the photon detection data. In each bin, the probability of
detecting a photon is given from Poisson statistics to be p ¼ 1 − e−ϕΔtbin where ϕ is the flux
during that bin (we assume that the pulse changes at a bin edge) and Δtbin is the bin width. We
then pull a Bernoulli sample for each bin and keep the first success as the arrival time of the first
photon in a given frame. Doing this for many frames, we generate simulated SPAD data for the
pulse waveform.

We fit the simulated data using each of the three fitting methods, with different parameters
where possible, and compare the performance of each fit. We use the following parameter for
each fitting method parameter:

• Gaussian averaging: σ ¼ ½15;25; 45;65�
• CPF (PELT): λ ¼ ½2;4; 6;8; 10�
• TV: λ ¼ ½1000;4000;6000;8000;10000�
We measure the MSE between the ground truth and fitted signal. We calculate SNR as the

ratio between the signal energy (L2 norm of the signal) and root MSE.

8 Appendix B: Determine the Structural Similarity

The SSIM index was developed by Wang and Bovik67 to have an universal metric that describes
the similarity of an image (e.g., reconstructed image) (X) and a reference (Y). Unlike other error

Laurenzis et al.: Comparison of super-resolution and noise reduction for passive single-photon imaging

Journal of Electronic Imaging 033042-12 May∕Jun 2022 • Vol. 31(3)



metrics (such as root-mean-square-error, MSE, or peak-signal-to-noise) which evaluate the abso-
lute difference between pixel values the SSIM characterizes the image quality in means of the
human perception or the human visual system and incorporate perceptual quality measures.
SSIM [see Eq. (7)] evaluates the luminance, contrast, and structure:68

EQ-TARGET;temp:intralink-;e007;116;549SSIM ¼ ð2μXμY þ C1Þð2σXY þ C2Þ
ðμ2X þ μ2Y þ C1Þðσ2X þ σ2Y þ C2Þ

: (7)

Here, μi denotes the mean intensity of image i and σi is its standard deviation.
Then, the structural correlation between the two images is evaluated by σXY ¼
1

N−1
P

N
i¼1ðXi − μXÞðYi − μYÞ. Furthermore, C1 and C2 are constants to bias low values and

to stabilize the division.
To use the SSIM on our results, we took a photograph of the scene (only the “fan scene”) as a

reference image and used Euclidean transform (translation ~T ¼ ðtu; tvÞ, rotation αR, and scaling
(S) where S is a constant factor for all results) of the reference image to enable an overlay with
the reconstructed image. Both images are cropped to the same size and the intensity as well as
the photon flux is normalized to a min-max span, Eq. (8):

EQ-TARGET;temp:intralink-;e008;116;391Inorm: ¼
I −minðIÞ

maxðIÞ −minðIÞ : (8)

The overlay process is illustrated in Fig. 11. The parameter set p ¼ ð~T; αR; SÞ was optimized
by maximizing the SSIM value, Eq. (9):

EQ-TARGET;temp:intralink-;e009;116;321arg max
p

SSIMðX; Y; pÞ with p ¼ ð~T; αR; SÞ: (9)

9 Appendix C: Impact of Sensor Fill Factor

The sensor fill factor has enormous impact on the super-resoluton reconstruction capabilities of
our MC algorithm. To illustrate this impact, we conducted a simulation using scene images
rotated by a known angle. Under this conditions, we are able to ideally compensate this motion
and reconstruction a super-resolution image of the scene.

In our simulation, we used the following procedure:

1. Rotate scene: The scene image is rotated by an angle ϕ ∈ ½0 deg; 90 deg�.
2. Create image: From the rotated scene, we generate a low-resolution sensor image.

(a) Crop scene: Scene image is croped to the sensor field of view (320 × 320 pixel).
(b) Resample image: Reduce resolution to the sensor resolution (32 × 32 pixel).

Resampling was done for two different sensor fill factors:

i. Low fill factor of 1% was achieved by sparse sampling using nearest-neighbor interpolation.
ii. High fill factor of 100% was obtained by intergration over the sensing area using bilinear

interpolation.

Fig. 11 A scene photograph is adapted as a reference (Y ) for determining SSIM to a recon-
structed image (X ).
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3. Prescaled MC was obtained by

(a) Prescaling the image to super-resolution (320 × 320 pixel) using nearest-neighbor
interpolation.

(b) MC was achieved by reversing previous scene rotation (−ϕ).
(c) Stacking: The result is stacked into the data volume.

4. Reconstruction: The final motion compensated image was obtained by integration over
the aligned image stack.

The simulation process is shown in Fig. 12. In Fig. 12(a), we show a scene image at a rotation
angle of ϕ ¼ 0 as a reference. The simulation with a low sensor fill factor (1%) is shown in
Fig. 12(b) while the high sensor fill factor (100%) is illustrated in Fig. 12(c). In both cases,
we show an example frame with low sampling resolution at a rotation angle ϕ ¼ 0 deg and
the super-resolution reconstruction.

The main difference between the two sampling methods can be seen in the fact that with a
low sensor fill factor the scene content is sparsely sampled while a high fill factor integrates more
spatial details. Thus, compared with the low sensor fill factor simulation, the scene reconstruc-
tion obtained from high fill factor sampling is much sharper and shows more details. In addition,
in the low sensor fill factor simulation, we can observe more reconstruction artifacts. Therefore,
from this simulation, we can conclude that higher sensor fill factor will enable better super-
resolution reconstruction.
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