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ABSTRACT. Purpose: The rapid development of highly multiplexed microscopy has enabled the
study of cells embedded within their native tissue. The rich spatial data provided by
these techniques have yielded exciting insights into the spatial features of human
disease. However, computational methods for analyzing these high-content images
are still emerging; there is a need for more robust and generalizable tools for evalu-
ating the cellular constituents and stroma captured by high-plex imaging. To address
this need, we have adapted spectral angle mapping—an algorithm developed for
hyperspectral image analysis—to compress the channel dimension of high-plex
immunofluorescence (IF) images.

Approach: Here, we present pseudo-spectral angle mapping (pSAM), a robust and
flexible method for determining the most likely class of each pixel in a high-plex
image. The class maps calculated through pSAM yield pixel classifications which
can be combined with instance segmentation algorithms to classify individual cells.

Results: In a dataset of colon biopsies imaged with a 13-plex staining panel, 16
pSAM class maps were computed to generate pixel classifications. Instance seg-
mentations of cells with Cellpose2.0 (F1-score of 0.83� 0.13) were combined with
these class maps to provide cell class predictions for 13 cell classes. In addition,
in a separate unseen dataset of kidney biopsies imaged with a 44-plex staining
panel, pSAM plus Cellpose2.0 (F1-score of 0.86� 0.11) detected a diverse set
of 38 classes of structural and immune cells.

Conclusions: In summary, pSAM is a powerful and generalizable tool for evaluat-
ing high-plex IF image data and classifying cells in these high-dimensional images.
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1 Introduction
The recent emergence of highly multiplexed tissue imaging modalities—systems that go beyond
the traditional channel limit of immunofluorescence (IF) microscopy—has enabled the study of
cells while maintaining spatial context, which is integral for furthering our understanding of
immunity in human disease.1–7 Studying cells within native tissue is imperative for elucidating
the organizational principles of cells and studying cell:cell interactions that may otherwise be
disrupted.6–10 Tissue-destructive methods such as single-cell sequencing can provide specific
information about gene expression in cells,11–13 but such methods lack the spatial context pro-
vided by imaging and are therefore constrained in the information they can convey. Highly multi-
plexed imaging addresses the need for higher specificity in studying a variety of cell
phenotypes in their native environment; multiple methodologies have been developed to image
upward of 40 protein markers in one field of view.1,5,14 Although these imaging methods dem-
onstrate the potential to unlock new insights into cell–cell interactions in situ, there is still a need
for robust and reliable methods for quantifying these types of images.

Most existing methods for characterizing high-plex IF images perform object detection and/
or instance segmentation of cells first, followed by annotation of cells.7,15 Typically, detected
cells are classified using their average pixel value across the segmentation mask, or the mean
pixel intensity (MPI), from each channel.15–17 However, averaging intensity across all image
pixels that fall within a cell mask loses potentially valuable information provided by signal locali-
zation within a cell. In addition, IF imaging captures only the two-dimensional section of cells
and structures existing in a three-dimensional space. Many cells, particularly some populations of
immune cells, can have protrusions that reach in and out of the imaging plane, potentially result-
ing in detected signals not being assignable to a cell nucleus in the imaging plane, or interfering
with the classification of in-plane cells.9,18,19 Detection and characterization of cells in the im-
aging plane will provide integral information for spatial biology studies; however, the spatial
context of the tissue surrounding cells is also worth understanding. We propose methods that
can retain valuable information from the interstitial spaces between cells while providing an
automated framework for rapid annotation of known cell types by collapsing the “spectral”
or “channel” dimension of highly multiplexed IF images.

Annotation of cell classes with respect to cell type and cell state in images is a particularly
difficult computational task.9,15,20 The boundary between cell class and cell state can be subjec-
tive, and cell class ground truth is both noisy and difficult to acquire; human readers are not
reliable in defining ground truth for cells in high-channel images.21 Because of the scarcity
of reliable ground truth and training data, methods such as support vector machines or convolu-
tional neural networks tend to perform poorly. Other methods classify cells by their protein
expression (represented by MPI) across several markers, either through a decision tree-based
method or through clustering on cell features, usually MPI of each channel.15 Cell typing in
high-plex images is specific to the staining panel used in each imaging experiment, which means
models trained with specific image channels or with channel MPI as input features are typically
not generalizable to new datasets. For example, an imaging experiment that does not include
blood dendritic cell antigen 2 (BDCA2) in the staining panel cannot directly probe plasmacytoid
dendritic cells (pDCs), and models trained with this data would therefore lack the ability to differ-
entiate pDCs from other dendritic cells (DCs). Because of the variety of markers required to
identify specific immune cell types and states, there is a need to develop more accessible, flex-
ible, and reliable methods for studying spatial immunology. Here, we present an adaptation of a
spectral angle mapping—a concept drawn from hyperspectral image analysis22–24—to calculate
pixel-level class representations for cell class annotation on highly multiplexed IF imaging
data (Fig. 1).

Although high-plex IF imaging does not physically collect hyperspectral data, a single-chan-
nel image of protein expression can be likened to a single wavelength band of a hyperspectral
image. As this dimension of high-plex IF data is not truly spectral, we refer to data in the channel
dimension of our images as “pseudo-spectral.” Pseudo-spectral angle mapping (pSAM) com-
presses the channel dimension of high-plex images into class maps through vector similarity
calculations. Reference vectors used for these vector similarity calculations can be generated
for any arbitrary staining panel, making pSAM more generalizable than current techniques,
specifically across imaging experiments using different staining panels. We demonstrate that
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pSAM is a readily adaptable method that will expedite the quantification of highly multiplexed
imaging data for studying spatial immunity and spatial biology.

2 Related Work

2.1 Cell Classification in High-Plex IF Images
High-plex IF imaging is a powerful tool for investigating cells in situ, but characterizing cells in
high-plex image data comes with challenges. Unlike single-cell experiments, classifying and
characterizing cells in tissue can be affected by tissue autofluorescence, true signal from neigh-
boring cells, inaccurate cell segmentation, image pre-processing artifacts, and batch effects from
staining and imaging.15,25,26 Most existing methods for cell annotation in high-plex image data
perform cell localization and segmentation first then characterize the detected cells by evaluating
the pixel intensities within each cell mask across all relevant image channels.15 One popular
method for cell annotation is reminiscent of flow cytometry analysis: applying manual or
semi-automatic gates to MPI across the population or detected cells, following decision-tree logic
until all cells have reached a terminal branch.14,27 Clustering algorithms are also commonly used
to separate cells into specific phenotypes.17,28

These decision tree and clustering algorithms are dataset-specific and typically not general-
izable to new data. Decision trees are known to be unstable, as small changes in the data
distribution can produce drastically different results.29 Even on the same data with the same
normalization, slightly different manual gates affect downstream decision points and cell clas-
sifications. Practically, these methods are typically iterative, requiring multiple rounds of human
intervention. Brbić et. al.30 proposed a graph-based deep learning method that can potentially
generalize to new datasets and minimize the need for human intervention.17 This graph-based
method also includes cell location to improve classification. All of these “cell-first” methods for
cell classification share limitations related to batch effects and signal overlap from neighboring
cells. Some algorithms, such as REDSEA,25 have been developed to try to mitigate some of these
limitations. Normalization and batch effect correction are also integral steps for ensuring accurate
classification with these methods.15

2.2 Spectral Angle Mapping and Pixel Classification
Hyperspectral imaging, originally known as imaging spectroscopy, is a decades-old imaging
technique developed for remote sensing.31 Spectral angle mapping (SAM) was first applied
for hyperspectral image and pixel classification and clustering in 1993.24 To achieve accurate
classifications of pixels in remote sensing data, a cosine similarity metric [Eq. (1)] was used
to compute the angular distances between a detected spectrum (A) and spectra of known ground

Fig. 1 Pseudo-spectral angle mapping in highly multiplexed immunofluorescence images classi-
fies pixels by their cosine similarity to ideal reference profiles marker expression.
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surface materials (B). As the advent of this pixel classification scheme, SAM and its variants
have been used for pixel classification in remote sensing images and novel applications of hyper-
spectral imaging, such as label-free imaging of biospecimens22,32–35

EQ-TARGET;temp:intralink-;e001;114;700 cosðθÞ ¼ A · B
kAkkBk : (1)

Clear parallels can be drawn between hyperspectral image data and high-plex IF data. Rather
than wavelength along the channel dimension of the image, high-plex IF has protein-specific
markers. Pixel vectors from a high-plex IF image do not contain spectra in the physical sense,
but the variable intensity across channels can be interpreted as such. Lui et al. developed Pixie,1

a method for pixel-level annotation (classification) in high-plex IF images. Pixie relies on
clustering for pixel classification. However, due to the immense number of pixels in a whole-
slide image, current hardware limitations require sampling of pixels, and therefore, Pixie is only
trained on a small fraction of pixel vectors from the image. This potentially limits the ability of
the algorithm to detect rare classes of pixels.

pSAM leverages the interpretability and simplicity of spectral angle-based pixel classifica-
tion methods as a novel approach to solving the cell classification problems presented by high-
plex IF imaging. This method allows researchers to incorporate known biology into cell clas-
sification while mitigating many of the challenges that come from a “cell-first” classification
method. These “cell-first” approaches prioritize reducing the image into objects (cells) then
extract features of those cells for classification. Conversely, pSAM takes a “class-first” approach,
maintaining full spatial resolution but compressing the channel dimension of the image into class
maps prior to pulling cells out of the data. This “class-first” approach overcomes many previ-
ously mentioned limitations of the “cell-first” approach, including batch effects and the spatial
bleed through of signal into neighboring cell segmentations.

3 Methods

3.1 Sample and Image Acquisition
Thirteen formalin-fixed, paraffin-embedded (FFPE) colon biopsy samples from patients diag-
nosed with primary sclerosing cholangitis (PSC) and/or inflammatory bowel disease (IBD) were
acquired from the Human Tissue Resource Center at the University of Chicago (HTRC). In addi-
tion, three kidney samples were selected from existing datasets also acquired from the HTRC.
One kidney sample was from a patient diagnosed with lupus nephritis (LuN), one from a patient
with mixed rejection of renal allograft [referred to later as kidney transplant rejection (KTR)], and
one from a patient with angiomyolipoma. All kidney samples were also FFPE.

A 5-μm section of each biopsy was de-paraffinized and mounted on a functionalized cover-
slip for iterative staining and imaging. Colon samples were iteratively stained and imaged with a
13-marker panel (Table S1 in the Supplementary Material), and kidney samples were iteratively
stained and imaged with a 43-marker panel (Table S2 in the Supplementary Material), which
included 10/13 markers from the colon panel. The PhenoCycler protocol was used for iterative
staining.36 All samples were imaged on an Andor Dragonfly spinning disk confocal microscope
with a 40× objective lens. For the colon dataset, each cycle of imaging included a nucleus stain
[4′,6-diamidino-2-phenylindole (DAPI)] imaged at 405 nm and three other stains from the panel
imaged at 488, 561, and 637 nm. For the kidney samples, each imaging cycle contained DAPI
and four other stains, with an additional channel at 730 nm. Blank imaging cycles (no fluores-
cence reporters except for DAPI) were acquired before and after all staining cycles to capture
background tissue autofluorescence. The resulting full-section images had a 0.1507-μm
pixel size.

3.2 Image Preprocessing
Images were acquired in 2048 × 2048 pixel fields of view with a 205-pixel (∼10%) overlap in
each dimension with neighboring tiles. The Ashlar stitching and alignment software37 was used
to stitch all image tiles into full-section composites and align all imaging cycles to the DAPI
channel from the first staining cycle.37 Ashlar performance was visually checked across all
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samples. After aligning all image channels, the first blank cycle of imaging was used for back-
ground subtraction and spectral normalization of all stained images. First, each channel of the
blank cycle was subtracted from the corresponding fluorescence channel in all imaging cycles.
Each imaging wavelength has a different dynamic range, so the subtracted images were also
divided by the standard deviation of the background image to standardize dynamic range across
imaging wavelengths. After standardization relative to imaging wavelength, images were min–
max normalized to the 99th percentile.

3.3 Defining Reference Pseudo-Spectra
The specific reference pseudo-spectra for each panel were generated through a literature review
and with expert immunologist input to reflect the protein expression patterns for each cell class.
Because certain markers are known to localize to different compartments of the cell (i.e., nucleus,
cytoplasm, or membrane), compartment-specific references were defined (Fig. 2). For the PSC
dataset, reference (or “ideal”) pseudo-spectra were defined with binary values (0 or 1) for each
marker (Fig. S1 in the Supplementary Material). In more complex panels such as the kidney
panel, there are situations in which a marker is expected to be expressed at multiple levels
(high/low/no expression). In these cases, a value of 0.5 was used to capture low expression
(Fig. S2 in the Supplementary Material). Importantly, marker order was held consistent across
all defined references. After visual quality checks of the images, some references were adapted,
and new references were generated due to the cross-reactivity of some markers. The “tubule
nucleus” reference spectra used for the kidney data defined CD21 as high in the nucleus compart-
ment of several tubule cells in these pathological states.

Given the wealth of literature defining immune cells based on their gene or protein expres-
sion,38–41 and the help of expert immunologists, we generated ideal pseudo-spectra as models of
the cell types probed by two high-plex staining panels. For example, an exhausted CD8 T cell
will have high expression of the markers CD45, CD3, CD8, and PD1 on the surface of the cell,
whereas a T regulatory cell will have high expression of CD45, CD3, and CD4 on the surface of
the cell and high expression of Foxp3 in the nucleus of the cell. In addition, images were exam-
ined for cross-reactivity of the antibodies. In the kidney dataset, CD21 was selected to identify
germinal center B cells. However, this marker showed a notably high signal in many tubule cell
nuclei of the kidney. Therefore, we also generated a reference pseudo-spectrum for a “tubule
nucleus” class, even though an antibody specific to tubule cell nuclei was not used in the staining
panel.

Fig. 2 Reference pseudo-spectra for the PSC dataset were designed for specific cell compart-
ments such as the nucleus (a) or cell membrane (b), based on the molecular target of the marker.
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In the 13-marker panel used for staining colon biopsies from PSC and IBD patients, three
markers probed cell nuclei, resulting in three unique ideal pseudo-spectra for the nucleus
compartment [Fig. 2(a)]. The remaining 10 markers are expected to be expressed on the cell
membrane or within the cytoplasm of cells,42–44 collectively referred to here as the membrane
compartment. Three of the 13 reference pseudo-spectra for this compartment are shown in
Fig. 2(b), with all reference profiles displayed in Fig. S1 in the Supplementary Material. In total,
16 unique reference pseudo-spectra were generated from the 13-marker panel used in the PSC
imaging experiment. Notably, there are more cell classes that could exist in these inflamed colon
samples which cannot be captured by this 13-marker staining panel.

The kidney dataset contained 43 markers, 30 of which were used to define reference
pseudo-spectra. Thirty-eight unique references were generated from these 30 markers: 34
membrane-associated pseudo-spectra and 4 nucleus-associated pseudo-spectra (Fig. S2 in the
Supplementary Material). For the kidney dataset, we also expect a contingent of unclassified
cells: some that are not captured by the staining panel and some that are not captured by this set
of references. We generated 38 total references from this panel, but more references could be
generated from these 43 markers that would further sub-type some of our selected classes.

3.4 Pseudo-Spectral Angle Mapping
All image channels were consistently stacked in the order defined by the reference pseudo-spec-
tra. Each channel of the multi-channel stack was normalized to match the range of the reference
pseudo-spectra (0 to 1). Pixel vectors extracted from the image data were defined as the value of
all markers at a single (x; y) position. Each pixel vector A in the image was compared with all
reference pseudo-spectra B by computing the cosine similarity between the two vectors
[Eq. (1)]. After all vector similarity calculations were complete, class maps for all references
were stacked. Pixel class was defined as the argmax of the class map stack (Θ) at each location
[Eq. (2)]

EQ-TARGET;temp:intralink-;e002;114;424classi;j ¼ arg max
x

ðΘi;jðxÞÞ: (2)

3.5 Instance Segmentation of Cells
The DAPI channel of each image was used to generate instance segmentations of all cells in each
full-section image. The “nuclei”model in Cellpose2.045 was fine-tuned using human-in-the-loop
training for each dataset. The three kidney samples used for the generalization experiments origi-
nated from separate datasets. Separate models were fine-tuned for the lupus nephritis and kidney
transplant rejection datasets. The model fine-tuned for lupus nephritis was also applied to the
angiomyolipoma sample. Nucleus segmentations were dilated by ∼1 μm (7 pixels) to achieve
approximate whole-cell segmentations. Voronoi tessellation was used to avoid overlap of the
expanded nuclei in areas of crowded cells.

3.6 Cell Classification
To optimize our cell classification, a threshold of 0.5 was applied to all class maps to reject low
cosine similarity scores. Importantly, this threshold is below the minimum value of the maximum
intensity projection (MIP) of all class maps. Cell membrane segmentations were computed by
subtracting the nucleus segmentation from the whole-cell segmentation. For each cell predicted
by the fine-tuned Cellpose model, we computed a score for all computed class maps using the
following protocol (Fig. 3).

A “soft” mask of each nucleus segmentation was created using an inverted distance trans-
form to blur the edges of the binary mask. These “soft masks” were multiplied by all class maps
associated with the nucleus compartment. The membrane mask (dilated nucleus segmentation
mask—nucleus segmentation mask) was also blurred using a distance transform and multiplied
with all class maps associated with the membrane compartment. The mean score of the masked
class maps was computed for all reference pseudo-spectra for each cell. Each cell was given a
nucleus classification and a membrane classification based on the maximum score for each com-
partment. A cell received a membrane class of “unclassified” if it scored zero for all membrane
classes. If the maximum score for the nucleus compartment was zero, the cell received a nucleus
classification of “generic nucleus.”
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4 Results

4.1 pSAM Collapses High-Plex Images to Class Maps
pSAM is a method for computing spatial likelihood maps for cell types probed by the markers
used in a custom staining panel. In pSAM, a cosine similarity metric is used to evaluate how close
a pixel vector is to a reference vector in an N-dimensional space, where N is the number of
channels in an image.

Class similarity maps for a single reference pseudo-spectrum can compress information
from all markers in the panel. Class maps of select reference pseudo-spectra for a full biopsy
section are displayed in Fig. 4(a). A maximum intensity projection of all 16 class maps, colored
by the argmax [Fig. 4(b)] revealed definitive structures—potentially even tertiary lymphoid
structures, and object-level (or cell-level) variability in densely packed areas [Fig. 4(b), inset].
Importantly, the class of the maximum score corresponded to the correct compartments, with
nucleus-associated classes scoring highest in cell nuclei, and membrane-associated classes scor-
ing highest in the pixels surrounding cell nuclei. As expected, the highest prevalence pixel class
is the “generic nucleus” class, where prevalence is the fraction of the entire population assigned
to a class [Fig. 4(c)]. In addition, the “other T cell” class is also very low prevalence, which is
expected, as T cell subsets that are negative for both CD4 and CD8 are generally rare. Although
very few pixels are most similar to the “other T cell” reference pseudo-spectrum, the average
class score (or average cosine similarity across the pixels in this class) for this category was
relatively high [Fig. 4(d)]. Conversely, the pSTAT3+ nucleus class showed high pixel prevalence
and a relatively low average class score. Within the maximum intensity projection, the areas
corresponding to the lumen of the intestine were associated with this class [Fig. 2(b), orange].
The intestinal lumen can be interpreted as background, as there is no tissue in this area.

4.2 Pixel Class Maps Aid in Cell Classification
Cellpose2.0 was fine-tuned to detect the cell nuclei in each dataset. After fine-tuning, the per-
formance of each tuned model was evaluated in an independent test set from each dataset (Fig. 5).
These test sets comprised 10 non-overlapping image tiles from five separate biopsies for each
dataset. Because the angiomyolipoma sample was the only sample from that pathology, the
model tuned for the lupus dataset was also used to segment cell nuclei for the angiomyolipoma
sample. Note that we demonstrate pSAM in three kidney samples from a larger dataset, so the
five samples used for the evaluation of instance segmentation performance are not included
in pSAM analysis. In a test set of 50 image tiles per dataset (512 × 512 pixels), separately

Fig. 3 Class maps are combined with instance segmentations of cells to classify cells. The seg-
mented nuclei and a dilated ring around each nucleus are used to mask class maps to generate
class scores for each detected cell. The maximum score in each compartment provides a compart-
ment-specific class for every cell.
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fine-tuned models achieved an F1-score of 0.83 ± 0.13 for the PSC dataset, 0.86� 0.11 for
the LuN dataset, and 0.70� 0.16 for the KTR dataset.

By collapsing high-plex image data into pixel-level class representations, we were also able
to infer likely cell phenotypes—merging pixel-level descriptors with predicted object (cell)

Fig. 4 The pSAM class maps display the similarity of pixels to each cell type without the need to
compare relative expression across multiple image channels (a). Given the maximum value at
each x∕y location, individual cells of different populations are clearly visible, even in densely
packed areas (b). For the sample shown in panel (b), the prevalence of each pixel class within
the tissue was calculated (c). The average cosine similarity score for all classes of pixels in this
example image is shown in panel (d). Prevalence (c) and average score (d) are calculated over the
pixels that fall within the tissue mask, whereas the slide background is filtered out as background
[black in panel (b)].

Fig. 5 Representative results from three separately fine-tuned Cellpose models on the PSC, LuN,
and KTR datasets. Ground truth segmentations (top, yellow) agree well with the fine-tuned models
(bottom, magenta) on data from previously unseen patients.
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masks. Class maps computed using pSAM were combined with instance segmentations of cell
nuclei to assign cell classes in the PSC dataset [Fig. 6(a)]. The predicted classes agreed well with
the class representations and the fluorescence images themselves [Figs. 2(b) and 6(a)]. These cell
phenotype scores were validated by analyzing the MPI for each category of cells across all thir-
teen colon samples [Fig. 6(b)]. The intensity profiles for each detected cell phenotype corre-
sponded well with the expected relative protein expression for the assigned cell type. This
population-level validation demonstrates the potential of pixel-level analysis of highly multi-
plexed images to improve cell classification. Variation in cell class prevalence was seen across
colon samples. Many samples had a plurality of IgG+ plasma cells, whereas others had a much
smaller proportion of these cells [Fig. 6(c)]. Across all samples, a strong majority of cells were
classified as having a “generic” nucleus [neither Foxp3+ or pSTAT3+, Fig. 6(d)]. Foxp3+ nuclei
were much more common than pSTAT3+ nuclei; however, it is worth noting that many samples
showed markedly high Foxp3 signal in the villi of the intestine, which may have elevated this
prevalence. In agreement with visual inspection of pSTAT3 images, many samples had no
pSTAT3+ nuclei, and those that did had a very small proportion. Note that we did not combine
membrane and nucleus classes into overall cell classes for this analysis (i.e., regulatory T cells
would be CD4T cells or inducible co-stimulator (ICOS)+ CD4T cells with a Foxp3+ nucleus).

4.3 Comparing pSAM and Other Cell Classification Methods for High-Plex IF
Imaging

Current mainstream methods for classifying cells classification in high-plex IF images draw
from single-cell analyses such as flow cytometry and single-cell sequences. Decision trees are

Fig. 6 Cell membrane classifications are shown for sample S1 in panel (b). Cell classes were
validated using the MPI for all channels for each cell. MPI was Z -scored across the full PSC data-
set (13 biopsies,∼885K cells), and the average Z -score for each channel is calculated for each cell
class across all samples (b). Note that each cell received a membrane class (top 13 rows) and a
nucleus class (bottom 3 rows). Across the 13 samples in the PSC dataset, pSAM detected varying
distributions of cell classes in the membrane compartment (c) and the nucleus compartment (d).
Notably, the generic nucleus class (gray) is a strong majority of cells, and pSTAT3+ nuclei (orange)
are rare but present and detectable in a few samples. The color bar in panel (a) is also applicable to
panel (c).
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generally used in flow cytometry analyses, passing cell populations through “gates” or hand-
drawn thresholds at each decision point. In single-cell sequencing, clustering algorithms are gen-
erally used to group cells into similar populations. The resulting clusters are manually, iteratively
tuned to reach biologically sound classifications. These two methods can also be implemented to
classify cells in images, using the MPI of each segmented cell in all channels for gating in a
decision tree or as input features into a clustering algorithm.

To compare these methods to pSAM, we have designed a decision tree for classifying cells in
the 13-plex PSC data for comparison to the pSAM classification results [Fig. 7(a)].46 Thresholds
at each decision point were calculated semi-automatically by first implementing a multi-Otsu
thresholding then manually selecting one of the calculated thresholds for each decision point
in the tree. We also implemented K-means clustering using 11 of the 13 cell markers in the

Fig. 7 Comparison of pSAM to a decision tree and K -means clustering for cell classification. (a) A
decision tree was designed to classify cells in the PSC dataset. Cells are gated at each decision
point using a threshold of MPI for the listed marker. UMAP dimensionality reduction was used to
compress the 13-dimension feature space into two dimensions, colored by cell class defined by the
decision tree (b), K -means clustering (c), and pSAM (d). Cell classes were also mapped back to
the global coordinate space [gray and yellow boxes in panels (b)–(d)]. These regions correspond to
the gray and yellow insets from the image in panel (e) (selected channels shown).
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panel. Cell nucleus markers Foxp3 and pSTAT3 were excluded for both the decision tree and
clustering to draw direct comparisons to the pSAM “membrane-based” classification.

Uniform manifold approximation and projection (UMAP) dimensionality reduction was
used to visualize all 13 MPI features in a two-dimensional feature space, and the resulting plot
was colored by the cell classification used by the decision tree [Fig. 7(b)], K-means clustering
[Fig. 7(c)], and pSAM [Fig. 7(d)]. Similar areas within the UMAP space correspond to the same
cell classes across the three methods. The decision tree and K-means clustering result in a larger
group of unclassified cells relative to pSAM. In addition, the “other T cell” class [yellow in
Figs. 7(b)–7(d)] was over-represented in K-means clustering, as it should be a rare cell class.
In addition, the decision tree showed comparatively fewer plasma cells and IgG+ plasma cells
relative to clustering and pSAM. Notably, IgG+ plasma cells have been shown to be an abundant
cell type in PSC.44

Visualizations of the classified cells from each method [Figs. 7(b)–7(d)] show that pSAM
accurately depicts a stark boundary between B cells and plasma cells [Fig. 7(e), gray box],
whereas both the decision tree and K-means clustering predict a region of “other immune cells”
between the B cell and plasma cell regions. Similarly, pSAM leaves fewer cells unclassified in
the villi of the intestine [Figs. 7(b)–7(e), yellow inset].

4.4 pSAM is Readily Generalizable to New Imaging Experiments
High-plex IF imaging experiments vary widely in the protein marker panel used to probe cells
and tissue. Therefore, to evaluate the generalizability of pSAM, we applied the same method
used on the 13-marker PSC dataset to a pilot set of three kidney samples imaged with the same
43-marker staining panel. The higher plex staining panel used in the kidney dataset allowed for
more than double the number of cell types and states to be detected in this dataset relative to the
13-plex PSC dataset. Pixels and cells of a given class were consistently identified across all three
kidney samples, despite coming from patients with different diagnoses. In addition, the pixel
class prevalence trend as expected; nucleus-associated classes had the highest pixel prevalence,
and more inflamed samples showed a higher prevalence of pixels with high similarity to immune
cell reference pseudo-spectra (Fig. S3 in the Supplementary Material). Specifically, the KTR
sample has by far the highest prevalence of lymphocyte-associate pixels (T and B cells), and
this sample has three large clusters of lymphocytes visible in the image [Fig. 8(a), white arrows].
Cell classes were also computed using the instance segmentation masks and the pixel class
representations.

Validation with MPI across each predicted class of cells showed that each cell phenotype had
the expected relative protein expression [Fig. 8(b)]. The trends for protein expression of a given
cell type are similar across these samples from different pathological conditions (Fig. S4 in the
Supplementary Material). All 43 markers were used for MPI validation, whereas only 30 markers
were used for cell classification. Therefore, a few surprising trends were found with the remain-
ing 13 markers. For example, RAR-related orphan receptor-γt (ROR-γt) (not used in cell clas-
sification) was relatively high in SLAMF7+ plasma cells. Further investigation is needed to
determine whether this finding is associated with cross-reactivity of antibodies or spatial overlap
of signal from neighboring cells. Further validation of the pSAM cell classification showed that
the prevalence of immune cell populations is highest in the transplant rejection sample, which
corresponds with visual analysis of the full biopsy sections [Fig. 8(c)]. In addition, the generic
nucleus class is by far the most abundant across samples, as expected [Fig. 8(d)].

4.5 Integrating Cell Classification with Interstitial Pixel Classes
One of the benefits of pSAM is that both pixel and cell classifications can be calculated.
Therefore, the complexity of the interstitial space between cells can also be analyzed. This
is particularly important for contextualizing interstitial signal from irregularly shaped myeloid
cells, such as macrophages and dendritic cells, as their protrusions are likely present in image
planes where their cell nucleus cannot be captured. To demonstrate the utility of pSAM for this
type of analysis, we have developed a “proximity score”metric for evaluating whether pixels of a
given class preferentially fall near cells of a given class, suggesting that out-of-plane cells might
be interacting with cells in the imaging plane. To calculate this proximity score, a proximity map
for a given cell class is calculated [Fig. 9(a)]. First, pixels in the interstitial space (pixels that are
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in the tissue but lie outside of cell segmentations) are weighted with a Gaussian decay with
respect to distance from the cell edge [Eq. (3)]. Sigma (σ) was selected to be 22.36 pixels,
so that pixels 4 μm from the cell boundary will be weighted at 0.5. If a cell has no neighbors
within the vicinity, this results in a smooth decay away from the cell [Fig. 9(a), left]. However, if
there are cells from other classes that reside near cells in the class of interest, the pixels within
those cell segmentations are weighted at zero, as they are not interstitial pixels [Fig. 9(a), right].

Next, for each class defined by pSAM, a binary mask of pixels belonging to this class was
multiplied by the proximity map defined for each cell class [Fig. 9(b)]. For each unique combi-
nation of cell and pixel class, the proximity score was calculated as the mean non-zero value.
Proximity scores were calculated for the lupus nephritis sample and the kidney transplant rejec-
tion sample from above. As expected, the highest proximity scores are for matched cell and pixel
classes along the diagonal [Figs. 9(c) and 9(d)]. Other high values indicate that pixels from one

Fig. 8 pSAM is readily applied to new datasets. (a) pSAM was used to classify pixels and cells in
three kidney samples. Each cell received a class assignment for one of 34 membrane classes and
one of four nucleus classes (data not shown). White arrows in the KTR sample denote immune cell
aggregates. Insets at the location of the yellow box are shown to the right of the whole-section
class map MIPs. Predicted cell classes for the inset are shown at the far right. (b) The Z -score
of the population MPI for all stains in the 43-marker panel is compared across all cell membrane
and nucleus classes. Note that all cells receive both a membrane class and a nucleus class.
(c) Comparison of the relative populations in each sample shows that the immune populations
detected show a diverse and abundant population of immune cells, corresponding with visual
inspection of the images. (d) Tubule and generic nuclei (gold and gray, respectively) are by far
the most abundant nuclei in all three samples. The color bar in panel (a) is also applicable for
panel (c).
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class are preferentially near cells of another, suggesting potential interactions. This type of analy-
sis could augment a cell-centric analysis that infers interactions from the proximity of cell cent-
roids. Importantly, this proximity score, facilitated by pSAM, can incorporate contextual
information from the image that does not rely solely on detected cells, which can help to infer
cell:cell interactions between in-plane and out-of-plane cells.

5 Discussion
pSAM provides a new tool for analyzing pixels and cells in highly multiplexed microscopy
images. Compressing multi-channel image data into class representations can help facilitate rapid

Fig. 9 Evaluating interstitial pixels through proximity mapping to cells. (a) For each cell class, prox-
imity maps were calculated by weighting interstitial pixels with a Gaussian decay away from the
boundaries of cells from that class. For sparse areas of cells (left), this results in a smooth decay. In
areas of crowded cells (right), pixels belonging to cells of other classes are weighted at zero, as
they are not “interstitial.” (b) By combining interstitial pixel class maps with the proximity maps from
panel (a), each class of interstitial pixels can be scored relative to a given cell class. (c) Six inter-
stitial pixel class maps are combined with the proximity map from CD4T cells to demonstrate the
variability in proximity scores for different classes of interstitial pixels. CD4T interstitial pixels are
generally located near the CD4T cell boundaries, as nucleus dilation is not a perfect segmentation
strategy. Mφ pixels (both CD14+ Mφ and M2) are in close proximity to CD4T cells, suggesting that
out-of-plane cells might be interacting CD4T cells. Interstitial pixels from DC classes also show
infrequent high proximity scores. All interstitial pixel classes were scored in relation to all cell
classes for the kidney transplant rejection sample (c) and the lupus nephritis sample (d).
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viewing of these complex images and evaluate the cellular constituents of a biopsy sample. In this
work, we demonstrated the benefits of pSAM for pixel and cell classification in two different
image datasets imaged with very different staining panels. First, in 13-plex images of colon biop-
sies from PSC/IBD patients, pSAM class maps demonstrated that compressing the channel
dimension of these images allows for rapid visualization of unique cell types in dense regions
of immune cell infiltrates. Not only were these class maps informative at the pixel and regional
level, combining them with an open-source cell-by-cell masking algorithm produced sensible
cell classifications.

Manual annotation of cell classes in high-plex images is a particularly difficult task for
human readers. Although human readers are the “gold standard” for this task, they are noisy
and inconsistent.21,47,48 Supervised classification algorithms using image annotations are there-
fore limited by the ambiguity of the ground truth. pSAM provides a means for classifying cells
that does not rely on manual image annotations and therefore does not depend on ground truth
that is not only noisy and unreliable but also difficult and costly to obtain.

In the 43-plex kidney images, pSAM detected a wide range of cell classes with highly var-
iable prevalences, suggesting that it can accurately detect rare cell types. However, there were
some discrepancies in the angiomyolipoma sample with tubule cells often classified as mono-
cytes and pDCs. Upon visual inspection of the images, the tubules in this sample are highly
irregular and have high levels of expression or cross-reactivity with CD14 (a marker for myeloid
cells) and BDCA2 (a marker for pDCs). Foxp3 is also high in the tubule cell cytoplasm in this
sample, but because that marker is only high in a nucleus-associated reference, this cross-
reactivity does not affect cell classification. In addition, the markers in the staining panel that
are intended for tubules stain the brush border of the tubule structure and not the cell membrane
or the cytoplasm near the nucleus (Fig. 10).

The localization of the tubule marker signal to the tubule structure and not the individual
cells would result in poor cell classification when classifying a cell based on the nucleus dilation
methods shown here. Despite this limitation, the class maps show high agreement with the tubule
classes at the brush border of the tubule and therefore maintain important contextual information
that would be lost in a “detect-first” classification method. Therefore, pSAM provides a rapidly
adaptable tool for assessing pixel classes which are helpful for inferring cell type prevalence in
images of diverse populations of cells.

High-plex imaging is often used for biological discovery, and the stains used are subject to
change from experiment to experiment as researchers toggle the cell types and populations they
want to probe. The acquisition of robust and reliable ground truth for every new imaging experi-
ment is costly and time-consuming, even if the quantity of manual annotations is reduced by fine-
tuning an existing model. Supervised classification of cells in highly multiplexed images can be
particularly difficult because image annotations are both difficult to acquire and specific to the
staining panel used for the imaging experiment.48 Therefore, models trained for cell classification

Fig. 10 Representative CD10 expression (distal tubule marker) in a kidney sample. CD10 signal
resides outside of the range of nucleus dilation for many tubule cells (select tubule cells denoted by
red arrows).
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in high-plex images are not typically generalizable to new datasets.49 In addition, the identifi-
cation of rare cell types is also problematic because they or often not represented in training data.
pSAM requires no image annotations—no noisy ground truth from human readers. Although
pSAM is a supervised algorithm, all supervision comes from generating reference pseudo-spectra
based on the staining panel used in the experiment. Notably, pSAM is less susceptible to batch
effects than other methods, such as those inspired by flow cytometry analysis. Because the cosine
similarities are calculated within a sample and explicitly evaluating relative intensities, classi-
fication is less sensitive to the absolute value of a signal. In addition, although not demonstrated
in this work, vector similarity metrics can also be used for spectral unmixing.33 In densely packed
regions of cells, different cell types can have overlapping signals at the cell membrane.25 This
overlapping signal problem, or “mixed signal” can also potentially be addressed through spectral
angle methods by allowing linear combinations of reference pseudo-spectra.22

Although pSAM is an adaptable and readily implemented algorithm for pixel and cell clas-
sification, the method is not without its limitations. Pixel-level analyses require pixel-level cal-
culations. Although a cosine similarity function is very quick to calculate, whole-slide images
tend to be several giga-pixels in size, and the class maps computed by pSAM have the same
dimensions as a single channel of the image. This necessitates a large amount of disk space
relative to “detect-first” methods which begin by reducing the data footprint from the number
of pixels in an image (∼108) to the number of cells in an image (∼104 to 105). Also, many current
studies ignore pixels that do not belong to detected cells. These “interstitial pixels” could simply
contain noise or nonspecific antibody staining. However, if these pixels have a very high sim-
ilarity to a reference pseudo-spectrum, it is much less likely to be non-specific staining, as multi-
ple markers would have preferentially stained (and not stained) that location. Maintaining
information from these pixels allows for a more thorough analysis of the tissue, contextualizing
the environment of the detected cells. Pixel-level analysis is currently an uncommon technique
for high-plex image analysis. Liu et al.1 have developed another pixel-level analysis method and
demonstrated that random sampling of pixel vectors from an image yields reproducible classes of
pixels. Although powerful, this sampling could miss rare cell types that could be easily detected
with pSAM.

High-plex imaging experiments can also be used to probe unexpected cell types or character-
ize the interstitial or acellular spaces in tissue.30 The pSAM algorithm presented here can only
detect the classes defined by the reference pseudo-spectra. In general, staining panels—even
high-plex panels—are experimentally designed to probe known cell types or states. Therefore,
the “you can only find what you look for” limitation of pSAM and other library-based methods
may not be a limitation for many imaging experiments, particularly those in which researchers
are interested in the spatial distributions of known or specific cell types. In addition, if there is a
plausible, but unexpected cell type, testing the existence of this cell type would only require the
generation of a reference pseudo-spectra to match that type.

Finally, cell classification with pSAM class maps is currently optimized to classify cells with
small cell bodies—including lymphoid cells, endothelial cells, and some myeloid cells. As men-
tioned earlier, tubule cells in the kidney are often characterized by signals at the brush border of
the tubule, which can be far away from the tubule cell nuclei. A simple nuclear dilation often does
not catch the associated cell signal. In this work, we demonstrate that pSAM class maps can aid
cell classification by summarizing pixel class scores within a dilated nucleus segmentation to
classify the cell. Other cell classification methods are also currently limited by the accuracy
of their whole-cell segmentations, as they quantify signal—rather than class score—within the
segmentation. More accurate whole-cell segmentations would improve cell classification, regard-
less of the annotation method used. However, as pSAM also provides pixel annotations, infor-
mation from the interstitial space between cells is maintained, and can be further analyzed to
investigate potential interactions between in-plane cells and amorphous cells whose nuclei reside
outside of the imaging plane.

6 Conclusion
Overall, pSAM is a simple and elegant solution for classifying pixels and cells in highly multi-
plexed microscopy data. Although the method has its limitations, it provides a generalizable and
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easily implementable solution for compressing high-channel image data into lower-dimensional
class representations. Importantly, pSAM mitigates the need to collect manual annotations on
images or individual cells, whereas probing the cell classes and states that a high-plex panel was
designed to detect.

Disclosures
MLG is a stockholder and receives royalties, Hologic, Inc.; an equity holder and co-founder,
Quantitative Insights, Inc. (now Qlarity Imaging); and a shareholder, QView Medical, Inc. and
receives royalties, General Electric Company, MEDIAN Technologies, Riverain Technologies,
LLC, Mitsubishi, and Toshiba. It is the University of Chicago Conflict of Interest Policy that inves-
tigators disclose publicly actual or potential significant financial interest that would reasonably
appear to be directly and significantly affected by the research activities.

Code and Data Availability
All relevant code will be available upon publication at https://github.com/durkeems13/pSAM Image
data from the PSC dataset will be available through HuBMAP.

Acknowledgments
M.S.T is grateful for the support of the Eric and Wendy Schmidt AI in Science Postdoctoral
Fellowship, a Schmidt Futures Program. This research was supported by the National Institute
of Allergy and Infectious Diseases (NIH) [Award Nos. U19 AI082724 (MRC), R01 AR055646
(MRC), and R01 AI148705 (MRC)]. The content is the responsibility of the authors and does
not necessarily represent the official views of the NIH. Funding was also provided by the GI
Research Foundation of the University of Chicago Medicine Digestive Diseases Center (MSD).
Computational resources and support were provided by NIH (Grant No. S10 OD025081)
Shared Instrument Grant (MLG). Special thanks to Chun-Wai Chan, MSc, for computational sup-
port and guidance and to Cezary Ciszewski of the University of Chicago Human Disease and
Immune Discovery for the help with image acquisition.

References
1. C. C. Liu et al., “Robust phenotyping of highly multiplexed tissue imaging data using pixel-level clustering,”

Nat. Commun. 14(1), 4618 (2023).
2. N. F. Greenwald et al., “Whole-cell segmentation of tissue images with human-level performance using

large-scale data annotation and deep learning,” Nat. Biotechnol. 40, 555–565 (2021).
3. A. Patwa et al., “Multiplexed imaging analysis of the tumor-immune microenvironment reveals predictors of

outcome in triple-negative breast cancer,” Commun. Biol. 4(1), 852 (2021).
4. J. Decalf, M. L. Albert, and J. Ziai, “New tools for pathology: a user’s review of a highly multiplexed method

for in situ analysis of protein and RNA expression in tissue,” J. Pathol. 247(5), 650–661 (2019).
5. L. Keren et al., “A structured tumor-immune microenvironment in triple negative breast cancer revealed by

multiplexed ion beam imaging,” Cell 174(6), 1373–1387.e19 (2018).
6. Y. Goltsev et al., “Deep profiling of mouse splenic architecture with CODEX multiplexed imaging,” Cell

174(4), 968–981.e15 (2018).
7. C. M. Schürch et al., “Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal

cancer invasive front,” Cell 182(5), 1341–1359.e19 (2020).
8. S. M. Lewis et al., “Spatial omics and multiplexed imaging to explore cancer biology,” Nat. Methods 18(9),

997–1012 (2021).
9. R. Abraham et al., “Specific in situ inflammatory states associate with progression to renal failure in lupus

nephritis,” J. Clin. Investig. 132(13), e155350 (2022).
10. R. L. Stewart et al., “Spatially-resolved quantification of proteins in triple negative breast cancers reveals

differences in the immune microenvironment associated with prognosis,” Sci. Rep. 10(1), 6598 (2020).
11. P. Hoover et al., “Accelerating medicines partnership: organizational structure and preliminary data from

the phase 1 studies of lupus nephritis,” Arthritis Care Res. 72, 233–242 (in eng) (2020).
12. D. A. Rao et al., “Design and application of single-cell RNA sequencing to study kidney immune cells in

lupus nephritis,” Nat. Rev. Nephrol. 16(4), 238–250 (2020).
13. H. Wu et al., “Single-cell transcriptomics of a human kidney allograft biopsy specimen defines a diverse

inflammatory response,” J. Amer. Soc. Nephrol. 29(8), 2069 (2018).
14. D. Phillips et al., “Highly multiplexed phenotyping of immunoregulatory proteins in the tumor micro-

environment by CODEX tissue imaging,” Front. Immunol. 12, 687673 (2021).

Torcasso et al.: Pseudo-spectral angle mapping for pixel and cell classification. . .

Journal of Medical Imaging 067502-16 Nov∕Dec 2024 • Vol. 11(6)

https://github.com/durkeems13/pSAM
https://github.com/durkeems13/pSAM
https://doi.org/10.1038/s41467-023-40068-5
https://doi.org/10.1038/s41587-021-01094-0
https://doi.org/10.1038/s42003-021-02361-1
https://doi.org/10.1002/path.5223
https://doi.org/10.1016/j.cell.2018.08.039
https://doi.org/10.1016/j.cell.2018.07.010
https://doi.org/10.1016/j.cell.2020.07.005
https://doi.org/10.1038/s41592-021-01203-6
https://doi.org/10.1172/JCI155350
https://doi.org/10.1038/s41598-020-63539-x
https://doi.org/10.1002/acr.24066
https://doi.org/10.1038/s41581-019-0232-6
https://doi.org/10.1681/ASN.2018020125
https://doi.org/10.3389/fimmu.2021.687673


15. J. W. Hickey et al., “Strategies for accurate cell type identification in CODEX multiplexed imaging data,”
Front. Immunol. 12, 727626 (2021).

16. C. R. Stoltzfus et al., “CytoMAP: a spatial analysis toolbox reveals features of myeloid cell organization
in lymphoid tissues,” Cell Rep. 31(3), 107523 (2020) (in eng).

17. J. W. Hickey et al., “Organization of the human intestine at single-cell resolution,” Nature 619(7970),
572–584 (2023).

18. M. S. Durkee et al., “Quantifying the effects of biopsy fixation and staining panel design on automatic
instance segmentation of immune cells in human lupus nephritis,” J. Biomed. Opt. 26(2), 022910 (2021).

19. V. M. Liarski et al., “Quantifying in situ adaptive immune cell cognate interactions in humans,” Nat.
Immunol. 20(4), 503–513 (2019).

20. M. S. Durkee et al., “Deep learning to detect lymphocytes with high phenotypic resolution in highly multi-
plexed fluorescence microscopy images of triple-negative breast cancer biopsies,” Proc. SPIE 11964,
1196406 (2022).

21. M. S. Durkee et al., “Convolutional neural networks detect cells in densely packed images at performance
levels similar to human readers,” Proc. SPIE 12467, 124670J (2023).

22. C. I. Chang, “Hyperspectral target detection: hypothesis testing, signal-to-noise ratio, and spectral angle
theories,” IEEE Trans. Geosci. Remote Sens. 60, 1–23 (2022).

23. Y. Sohn and N. S. Rebello, “Supervised and unsupervised spectral angle classifiers,” Photogramm. Eng.
Remote Sens. 68(12), 1271–1282 (2002).

24. F. A. Kruse et al., “The spectral image processing system (SIPS)—interactive visualization and analysis of
imaging spectrometer data,” Remote Sens. Environ. 44(2), 145–163 (1993).

25. Y. Bai et al., “Adjacent cell marker lateral spillover compensation and reinforcement for multiplexed images,”
Front. Immunol. 12, 652631 (2021).

26. Y. H. Chang et al., “RESTORE: robust intensity normalization method for multiplexed imaging,” Commun.
Biol. 3(1), 111 (2020).

27. M. Y. Lee et al., “CellSeg: a robust, pre-trained nucleus segmentation and pixel quantification software for
highly multiplexed fluorescence images,” BMC Bioinf. 23(1), 46 (2022).

28. S. Greenbaum et al., “A spatially resolved timeline of the human maternal–fetal interface,” Nature 619(7970),
595–605 (2023).

29. R.-H. Li and G. G. Belford, “Instability of decision tree classification algorithms,” in KDD ′02: Proc. Eighth
ACM SIGKDD Int. Conf. Knowl. Discov. and Data Mining, pp. 570–575 (2002).
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