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Abstract. Two different formalisms for the homogenization of composite materials containing
oriented ellipsoidal particles of isotropic dielectric materials are being named after Bruggeman.
Numerical studies reveal clear differences between the two formalisms which may be exacer-
bated: (i) if the component particles become more aspherical, (ii) at mid-range values of the
volume fractions, and (iii) if the homogenized component material is dissipative. Only the
correct Bruggeman formalism uses the correct polarizability density dyadics of the component
particles in the homogenized composite material (HCM) and is directly derivable from the
frequency-domain Maxwell postulates specialized for the HCM. © 2012 Society of Photo-Optical
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The Bruggeman formalism provides a well-established technique for estimating the effective
constitutive parameters of homogenized composite materials (HCMs).'~ The scope of its applic-
ability is not restricted to dilute composite materials and it is easy to implement numerically, both
of which contribute to its enduring popularity.

The Bruggeman formalism was originally devised for isotropic dielectric HCMs, comprising
two (or more) isotropic dielectric component materials distributed randomly as electrically
small spherical particles.* Generalizations of the Bruggeman formalism which accommodate
anisotropic and bianisotropic HCMs have been developed.® A rigorous basis for the Bruggeman
formalism—for isotropic dielectric,® anisotropic dielectric,”® and bianisotropic”!'® HCMs—is
provided by the strong-property-fluctuation theory, whose lowest-order formulation is the
Bruggeman formalism. (In Ref. 7, the formula of Polder and van Santen, for the effective relative
permittivity of an isotropic dielectric HCM, yields the same results as the formula of
Bruggeman.*)

Our focus in this letter is on HCMs arising from two isotropic dielectric component materials,
labeled a and b. Their relative permittivities are €4 and €”, while their volume fractions are f,,
and f, = 1 — f,. Both component materials are assumed to be randomly distributed as electrically
small ellipsoidal particles. For simplicity, all component particles have the same shape and orienta-
tion. The surface of each ellipsoid, relative to its centroid, may be represented by the vector

r.(0.¢) =nU ¢ £(0. ), ey

with 7 being the radial unit vector from the ellipsoid’s centroid, specified by the spherical polar
coordinates € and ¢. The linear dimensions of each ellipsoid, as determined by the parameter 7,
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are assumed to be small relative to the electromagnetic wavelength(s). Let us choose our
coordinate system to be such that the Cartesian axes are aligned with the principal axes of the
ellipsoids. Then the ellipsoidal shape is captured by the dyadic

U=Uii+U,5y+U.2%, @)

wherein the shape parameters U,,. >0 and {X,J,Z} are unit vectors aligned with the
Cartesian axes.

The ellipsoidal shape of the component particles results in the corresponding HCM being an
orthorhombic biaxial dielectric material. That is, the Bruggeman estimate of the HCM relative
permittivity dyadic has the form

Brl — €Br1xx +€§rlii +€]Z3rlzz . (3)
The relative permittivity parameters eEfV"Z are given implicitly by the three coupled equations'!
et — €]2rl €b _ e];rl

1+D£( Brl)fa 1+D, ( Br])fb (fe{x,y,z}). 4)

Herein D, are components of the depolarization dyadic
D=DX%+D,jj+D 2z, ©)

specified by the double integrals’

3
p. -1 dgb/ desm Gcos ¢
477 U?
sm395m ¢
D, =1 dgb/ dg——— 3, 6)
1 4 in 9 0
D=L d¢/ desm (2:05
4z 0 Uzp

which involve the scalar parameter

) 2 L2 g2 2
sin“fcos“ ¢ o, sin“fsin“¢p L, cosTO o
7 A ™

Z

The coupled nature of the three equations in Eq. (4) means that numerical methods are generally
needed to extract the relative permittivity parameters 6,‘?3,"1 from them.

An alternative formalism for the homogenization of the same composite material as in the
foregoing paragraph is also referred to as the Bruggeman formalism.'>”'> Let us write the

estimate of the HCM’s relative permittivity dyadic provided by this alternative formalism as

Br2 — €Br2xx+€Br2yy +€Br2 (8)
The relative permittivity parameters e,‘?&%z are given by the three equations
Br2 b Br2
€ — € 7 € — € f
+ =0, e{x,y.2}), 9
Br2 + L ( 6?1‘2) f“ 6,?r2 + L ( 6?r2) fb ( { y }) ( )

wherein the depolarization factors'®

m%m/ 1

TxtyPz s ’
2N UG+ U+ UG+ U2

L, = (¢ efxy.2z}) (10

are components of the depolarization dyadic
L=L3IX+L3y+L 2L (1n
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Fig. 1 The estimates 52 (blue, dashed curves), ¢} (green, solid curves), and 2" (red, bro-
ken dashed curves) plotted versus the asphericity parameter A € (0,4.5). The ¥} , estimates are
represented by thick curves and the e,‘?sz estimates are represented by thin curves. The ellipsoidal
shapes of the component material particles are described by shape parameters U, =1,
U, =1+ (A/3),and U, = 1 4 2A. The relative permittivities of the component materials are ¢? €
{0.5,1.5} and €® = 12; and the volume fraction f, = 0.5.

Each of the three equations in Eq. (9) is a quadratic equation in €2 whose solution may be

explicitly expressed as

€Br2 = BEVP —day

T (etxy), (12)

witha=L,—1,5=¢€(f,—L;) +€"(f, — L), and y = L,e%e". The sign of the square root
term in the solution seen in Eq. (12) may be determined by appealing to the anisotropic dielectric
generalization of the Hashin—Shtrikman bounds,'” for example.

Let us illustrate the differences between the estimates €®! and eP'2 by means of some repre-
sentative numerical results. The two estimates are identical for the limiting case represented by
U,=U, =U, =1 (ie, for isotropic dielectric HCMs), but differences emerge as the aspheri-
city of the component particles intensifies. Suppose that the shape parameters describing the
component ellipsoids have the form U, =1, U, =1+ (A/3), and U, = 1 + 2A. Thus, the
asphericity of the ellipsoids is governed by the scalar parameter A. We begin with the nondis-
sipative scenario wherein ¢4 € {0.5, 1.5} and e = 12. Also, we fix f. = 0.5. Plots of the rela-

tive permittivity parameters e?rylfﬂ versus the asphericity parameter A are presented in Fig. 1.
The difference between €2 and P grows steadily as A increases, reaches a maximum for

1 <A <2, and then slowly shrinks as A increases beyond 2. The difference between €5

and €2 follows a similar pattern. However, in the case of ey and €l;r2, the difference increases
uniformly as A increases. The differences between €7 and e®72, are generally greater for e* =

0.5 than for ¢* = 1.5. In the former case the maximum difference is approximately 15%, whereas
in the latter case it is approximately 5%.

We turn now to the effect of volume fraction. The calculations of Fig. 1 are repeated for Fig. 2
except that here the relative permittivity parameters s)]?fvlszr 2 are plotted versus the volume fraction
f 4> while the asphericity parameter is fixed at A = 4.5. The differences between the estimates of
the two formalisms are clearly greatest at mid-range values of f,, and they are generally greater
for ¢ = 0.5 than for ¢* = 1.5.

Lastly, the effects of dissipation are considered. We repeated the calculations of Fig. 1 but
with A =4.5and ¢? € {0.5 + i85, 1.5 + i6}. Here 6 > 0 governs the degree of dissipation exhib-

ited by component material a. The real and imaginary parts of the relative permittivity param-

eters e?,ryl,’zBrz are plotted versus the dissipation parameter ¢ in Fig. 3. The differences between the

real parts of the estimates €}, B2
and they decrease uniformly as § increases. In contrast, the differences between the imaginary
parts of the estimates 57! and 22,
parts generally reach a maximum for mid-range values of § and thereafter decrease as § increases.
For both the real and imaginary parts of the estimates €2"! B2 oenerally larger differences

X, V.2 X,¥,2°
arise for ¢4 = 0.5 + i than for ¢* = 1.5 + ié.

and e;'7, are largest when component material a is nondissipative
increase as ¢ increases. These differences in the imaginary

and €
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Fig. 2 AsFig. 1 exceptthat A = 4.5 and the estimates e, = are plotted versus the volume fraction

f, e (0,1).
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Fig. 3 As Fig. 1 exceptthat A = 4.5, ¢? € {0.5 + i§, 1.5 + i§}, and the real and imaginary parts of

the estimates eEf}f are plotted versus the dissipation parameter § € (0, 2).

Thus, there are significant differences between the estimates ¢! and e®™> when ellipsoidal

component particles are considered. These differences may be exacerbated: (i) if the component
particles become more aspherical, (ii) at mid-range values of the volume fractions of the com-
ponent materials, and (iii) if the HCM is dissipative. The differences between the two
estimates may be further exacerbated if one of the component materials has a positive-valued
relative permittivity which is less than unity (or a relative permittivity whose real part is
positive-valued and less than unity). Relative permittivities in this range are associated with
novel materials possessing engineered nanostructures; these artificial materials have been the
subject of intense research lately.'®>° (The parameter regime wherein one of the component
materials has a positive-valued relative permittivity while the other has a negative-valued relative
permittivity (or likewise for the real parts of the relative permittivities in the case of dissipative
HCMs) is avoided here because the Bruggeman formalism can deliver estimates in this regime
which are not physically plausible.?!)

The differences between the two formalisms stem from the differences between the
depolarization dyadics D and L. The Bruggeman formalism conceptually employs an average-
polarizability-density approach:*> Suppose the composite material has been homogenized into
an HCM. Into this HCM, let additional aligned ellipsoidal particles of the two component mate-
rials be dispersed in such a way as to maintain the overall volume fractions of a and b. This
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dispersal cannot change the effective properties of the HCM—because the volume-fraction-
average of the polarization density dyadics of two particles, one of each component material,
embedded in the HCM with relative permittivity e®! is exactly zero. In computing the polariz-
ability density dyadic of each particle, it must therefore be assumed that the particle is surrounded
by the HCM. This fact legitimizes the use of D, which contains the anisotropic HCM’s effective
constitutive properties via the scalar p of Eq. (7). Indeed, Eq. (4) is directly derivable from the
frequency-domain Maxwell postulates specialized for the actual HCM.*!'”

On the other hand, use of L to compute the polarizability density dyadic of a particle implies
that it is surrounded by an isotropic HCM, which is clearly incorrect. The alternative formalism
that delivers €5 is a heuristic extrapolation of the Bruggeman formalism for isotropic dielectric
HCMs,'*!3 and it lacks the rigorous basis that underpins the estimate of 5. The dispersal of
aligned ellipsoidal particles of the two component materials without disturbing the overall
volume fractions into the HCM with relative permittivity €™ would change the effective proper-
ties of the HCM—because the volume-fraction-average of the polarization density dyadics of
two particles, one of each component material, embedded in the HCM with relative permittivity
€82 would not be zero.

We have thus delineated the differences between the two formalisms and identified one of
them as the correct Bruggeman formalism. We hope that this exposition will prevent confusion
between the two formalisms from perpetuating.
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