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Abstract. Remote sensing technique often analyzes the thermal characteristics of any area. Our
study focuses on estimating land surface temperature (LST) of Raipur City, emphasizing the
urban heat island (UHI) and non-UHI inside the city boundary and the relationships of LST
with four spectral indices (normalized difference vegetation index, normalized difference
water index, normalized difference built-up index, and normalized multiband drought index).
Mono-window algorithm is used as LST retrieval method on Landsat 8 Operational Land
Imager (OLI) and Thermal Infrared Sensor (TIRS) data, which needs spectral radiance and emis-
sivity of TIRS bands. The entire study is performed on 11 multidate Landsat 8 OLI and TIRS
images taken from four different seasons; premonsoon, monsoon, postmonsoon, and winter, in a
single-year time period. The Landsat 8 data derived LST is validated significantly with Moderate
Resolution Imaging Spectroradiometer (MOD11A1) data. The results show that the UHI zones
are mainly developed along the northern and southern portions of the city. The common area of
UHI for four different seasons is developed mainly in the northwestern parts of the city, and the
value of LST in the common UHI area varies from 26.45°C to 36.51°C. Moreover, the strongest
regression between LST and these spectral indices is observed in monsoon and postmonsoon
seasons, whereas winter and premonsoon seasons revealed comparatively weak regression. The
results also indicate that landscape heterogeneity reduces the reliability of the regression between
LST with these spectral indices. © 2019 Society of Photo-Optical Instrumentation Engineers (SPIE)
[DOI: 10.1117/1.JRS.13.024518]
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1 Introduction

Land surface temperature (LST) estimation is considered as one of the most significant tasks in
thermal remote sensing study, where thermal impacts of changing land use/land cover (LULC)
may regulate the generation of urban heat island (UHI) in mixed urban landscapes.1–5 The effect
of UHI on some major cities (e.g., Beijing, Columbus, Shanghai, Baltimore, and Chicago) in the
world is growing at an alarming rate and is directly related to the LULC categories.6–11 Various
LULC indices (vegetation, impervious surface area, etc.) were applied in a UHI related remote
sensing study to determine the changed pattern of LST in different types of natural and man-
made landscape systems.12–16 Some recent articles discussed the statistical linear regression
between LST and some selected LULC indices for separate study areas like Brisbane,17

Raipur,18 Shanghai,19 Addis Ababa,20 Mexico,21 Philadelphia,22 Florence, and Naples.23

A more recent direction includes the application of some sophisticated statistical techniques
to estimate the seasonal variability of LST in the urban area. Cui and de Foy24 showed that
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vegetation cover, daytime insolation, and atmospheric stability are related to seasonal UHI var-
iations in Mexico City, Mexico. Zhou et al.25 made an attempt in Baltimore, USA, to build rela-
tionships between land cover and UHI and their seasonal variability. Haashemi et al.26 presented
a seasonal variability in the regression between LST and fractional vegetation cover, albedo,
impervious surfaces, and elevation in Tehran, Iran.

In later studies, seasonal variation in the UHI effect was critically analyzed. Seasonal effects
in urban thermal patterns were determined by spatial regression analyses in Ohio, USA.27

Multiple statistical methods were integrated to show the seasonal contrast of some LULC indices
for LST distribution in Shenzhen, China.28 A seasonal variation in LST and selected LULC
indices was investigated in Jaipur, India.29 A trend and seasonal decomposition model for
LST change over Beijing, China, was investigated.30 A regression-based model was performed
to determine the average annual and seasonal trend of LST in peninsular Spain.31,32 The relation-
ship of urbanization and climate variability with urban and rural LST for 31 cities of China was
critically investigated.33 An analytical research work performed in more than 86 major cities of
China presented that UHI is seasonally different and is negatively related to the cloud cover
percentage in transitional seasons.34 A landscape source-sink distance index was applied to relate
the landscape connectivity and LST variation in Beijing, China.35 A variation of LST due to
elevation change in summer, winter, and monsoon season for Jaipur, India, was assessed.36

In summary, recent researchers tried to make a true attempt in the seasonal variability of
LST in UHI of the major cities using common statistical methods.

This paper was an analytical study based on the seasonal variability of LST distribution
inside the UHI and the area outside the UHI zones in a typical Indian city. The area outside
the UHI zones is described here as non-UHI.18,23 Basically, the term “non-UHI” is slightly differ-
ent from the term “urban cool island (UCI).” Generally, the term UCI indicates that the low-
temperature zones inside an urban area are characterized by urban vegetation, wetland, and
water bodies, whereas the term “non-UHI” is used to present an area other than the UHI,
which is actually denoted moderate-to low-temperature zones of an urban area. Hence, UCI
can be considered as a part of non-UHI in an urban area. Another term “common-UHI”
was used in this study to show the common area of UHI for each and every satellite image
(total of 11 images) for four different seasons.18,23

Landsat TIR data are often used in the identification of UHI zones.37–39 LST derivation using
Landsat TIR data becomes popular through the introduction of some algorithms, such as mono-
window algorithm,40,41 single-channel algorithm,41–45 radiative transfer algorithm,41,45 split-win-
dow algorithm.41,45–47 Landsat 8 TIRS dataset has two TIR bands (bands 10 and 11). Generally,
TIR band 10 is used for LST derivation as TIR band 11 is associated with larger uncertainties and
thus it is not recommended to use the split-window algorithm. In the radiative transfer equation,
LST estimation requires atmospheric correction and emissivity correction, which are difficult to
perform.41 Ground emissivity, atmospheric transmittance, and effective mean atmospheric tem-
perature are the parameters needed to derive the LST using mono-window algorithm, whereas
single-channel algorithm needs atmospheric transmissivity, upwelling, and downwelling atmos-
pheric radiance. Single-channel algorithm and mono-window algorithm both present significant
results in LST retrieval.18,23,43,48 In this study, LST derivation process was conducted using the
mono-window algorithm.

The specific aims of the study were: (1) to describe the nature of LST in the UHI, non-UHI,
common UHI, and the whole of Raipur City for Landsat 8 OLI and TIRS images selected from
premonsoon, monsoon, postmonsoon, and winter seasons in a single-year span and (2) to examine
the variation in nature and strength of regression between LST and normalized difference vegeta-
tion index (NDVI), normalized difference water index (NDWI), normalized difference built-up
index (NDBI), and normalized multiband drought index (NMDI) for the UHI, non-UHI, and
common UHI and for the whole of Raipur City in these four particular aforesaid images.

2 Study Area and Data

Raipur, the capital city and the largest city of Chhattisgarh State in east-central India, located
along the west of Mahanadi River, was selected for the present research work. Raipur is
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characterized by comparatively dry climate having no influence of coastal or maritime climatic
condition. Moreover, Raipur is a rapidly growing city in India where a lot of new conversions of
land have been seen in the recent time period. It has a wide variety in the population. The city has
also seen exponential growth in industrial sectors and has emerged as a major business hub in
central India. It is also ranked seventh in Ease of Living Index 2018 by Union Ministry of
Housing and Urban Affairs.49 Raipur is considered to be one of the modern and smart techno-
logical cities in India due to the addition of new technology to the older system, power plant
retrofit, home energy retrofit, seismic retrofit, eco-friendly, and sustainable nature; and thus the
city was selected as the study area of the research work. Due to the presence of various types of
surface materials, the nature of LST distribution is too dynamic. The latitudinal and longitudinal
extents of Raipur City are 21°11’22”N-21°20’02”N and 81°32’20”E-81°41’50”E, respectively
(Fig. 1). The mean elevation of the city is around 298 m. Raipur City is characterized by a
tropical wet and dry climate. There are four seasons observed in Raipur according to the
India Meteorological Department, i.e., premonsoon or summer (March to May), monsoon
(June to September), postmonsoon (October to November), and winter (December to
February). Generally, the summer months (March to May) remain hot and dry. The mean annual
temperature of Raipur City lies between 21°C to 34°C. Amount of rainfall is moderate (average
annual rainfall is 120 to 150 cm.). Rain occurs mainly in the monsoon season. At that time,
vegetation was looking green and healthy, containing more chlorophyll component. In the
rainy monsoon season, temperature falls at a significant rate from the summer or premonsoon
season. A pleasant weather condition persists throughout the postmonsoon season. Winter sea-
son remains cool and dry. December is considered the coldest month (average temperature 12°C)
of the city.

A total of eleven (three from the premonsoon, two from the monsoon, three from the post-
monsoon, and three from winter season) Landsat 8 Operational Land Imager (OLI) and Thermal
Infrared Sensor (TIRS) data (<10% cloud coverage) were selected to determine the UHI zones
over all of Raipur City (Table 1). The Landsat 8 datasets were freely downloaded from the
website of the United States Geological Survey.50 Only Landsat TIR band 10 data were

Fig. 1 The study area: (a) Chhattisgarh in India, (b) Raipur City in Chhattisgarh, and (c) Raipur
City.
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used for LST retrieval process because TIR band 11 data faces some calibration uncertainty.
Optical bands 3, 4, 5, 6, and 7 datasets were used in developing NDVI, NDWI, NDBI, and
NMDI. The entire study was performed in the environment of some sophisticated image process-
ing and GIS software packages.

3 Methodology

3.1 Determination of NDVI, NDWI, NDBI, and NMDI

NDVI51 is considered one of the most frequently used vegetation indices in remote sensing study.
It is also applied in deriving LSTand normally shows a negative regression with LST. NDWI52 is
generally used for water body extraction. NDBI53 is another spectral index, which was applied in
this study for built-up area extraction. NMDI54 was also used to extract the dry soil or bare land.
The formulation of these four spectral indices was presented in Table 2. Integration of suitable
threshold values of these spectral indices is useful in identifying several LULC types.55

3.2 LST Derivation Using Landsat 8 OLI and TIRS Band

For retrieving LST using mono-window algorithm, the original Landsat 8 TIR band (100-m
resolution) was resampled into 30 m. The entire procedure included the following equations:56

Table 1 Specification of multidate Landsat 8 OLI and TIRS satellite images.

Date of acquisition Season Time Path/row

Sun
elevation
(deg)

Sun
azimuth
(deg)

Cloud
cover (%)

Earth–Sun
distance

(astronomical unit)

09-Nov-2013 Postmonsoon 14:27:51 142/044 47.1003 152.5147 0.03 0.9905

25-Nov-2013 Postmonsoon 14:27:43 142/044 43.2895 153.9750 0.00 0.9871

11-Dec-2013 Winter 14:27:42 142/044 40.6309 153.5245 0.00 0.9847

27-Dec-2013 Winter 14:27:33 142/044 39.5066 151.6083 1.69 0.9835

28-Jan-2014 Winter 14:27:13 142/044 42.3669 144.8623 0.49 0.9849

17-Mar-2014 Premonsoon 14:26:36 142/044 55.9542 129.3872 0.00 0.9949

02-Apr-2014 Premonsoon 14:26:19 142/044 60.9189 121.7216 0.00 0.9995

20-May-2014 Premonsoon 14:25:38 142/044 68.5638 90.4085 5.46 1.0118

05-Jun-2014 Monsoon 14:25:45 142/044 68.3821 83.3098 0.02 1.0146

25-Sep-2014 Monsoon 14:26:11 142/044 59.2100 134.1804 0.81 1.0030

12-Nov-2014 Postmonsoon 14:26:21 142/044 46.2266 152.4664 7.59 0.9899

Table 2 Description of NDVI, NDWI, NDBI, and NMDI.

Acronym Description Formulation Reference

NDVI Normalized difference vegetation index NIR−Red
NIRþRed 51

NDWI Normalized difference water index Green−NIR
GreenþNIR 52

NDBI Normalized difference built-up index SWIR1−NIR
SWIR1þNIR 53

NMDI Normalized multiband difference index ½NIR−ðSWIR1þSWIR2Þ�
½NIRþðSWIR1þSWIR2Þ� 54
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EQ-TARGET;temp:intralink-;e001;116;735Lλ ¼ 0.0003342 ×DN þ 0.1; (1)

where Lλ is spectral radiance (Wm−2 sr−1 mm−1)

EQ-TARGET;temp:intralink-;e002;116;701Tb ¼
K2

ln
�
K1

Lλ
þ 1

� ; (2)

where Tb is the at-sensor brightness temperature (K),57 K2 and K1 are the calibration constants.
Here K1 is 774.89 (Wm−2 sr−1 mm−1) and K2 is 1321.08 (Wm−2 sr−1 mm−1)

EQ-TARGET;temp:intralink-;e003;116;627Fv ¼
�

NDVI − NDVImin

NDVImax − NDVImin

�
2

; (3)

where NDVImin is the minimum value (0.2) of NDVI for bare soil pixel and NDVImax is
the maximum value (0.5) of NDVI for healthy vegetation pixel.58–60

dε is the geometric distribution effect for the natural surface and internal reflection.
The value of dε may be 2% for mixed and elevated land surfaces58

EQ-TARGET;temp:intralink-;e004;116;534dε ¼ ð1 − εsÞð1 − FvÞFεv; (4)

where εs is the soil emissivity, Fv is the fractional vegetation, F is a shape factor (0.55),58 and
εv is the vegetation emissivity

EQ-TARGET;temp:intralink-;e005;116;479ε ¼ εvFv þ εsð1 − FvÞ þ dε; (5)

where ε is land surface emissivity. The value of ε is determined by the following equation:58

EQ-TARGET;temp:intralink-;e006;116;436ε ¼ 0.004 × Fv þ 0.986: (6)

Water vapour content is determined by the following equation:61

EQ-TARGET;temp:intralink-;e007;116;392w ¼ 0.0981 ×
�
10 × 0.6108 × exp

�
17.27 × ðT0 − 273.15Þ
237.3þ ðT0 − 273.15Þ

�
× RH

	
þ 0.1697; (7)

where w is the water vapor content (g∕cm2), T0 is the near-surface air temperature (K), and RH is
the relative humidity (%). These parameters of the atmospheric profile were the average values of
14 stations around Raipur, which were obtained from the Meteorological Centre, Raipur and
the Regional Meteorological Centre, Nagpur.

EQ-TARGET;temp:intralink-;e008;116;299τ ¼ 1.031412 − 0.11536w; (8)

where τ is the total atmospheric transmittance.62

Raipur City is located in a tropical region. Thus the following equations were applied to
compute the effective mean atmospheric transmittance of Raipur:

EQ-TARGET;temp:intralink-;e009;116;232Ta ¼ 17.9769þ 0.91715T0; (9)

EQ-TARGET;temp:intralink-;e010;116;189Ts ¼
fað1 − C −DÞ þ ½bð1 − C −DÞ þ CþD�Tb −DTag

C
; (10)

EQ-TARGET;temp:intralink-;e011;116;156C ¼ ετ; (11)

EQ-TARGET;temp:intralink-;e012;116;134D ¼ ð1 − τÞ½1þ ð1 − εÞτ�; (12)

where Ta is the mean atmospheric temperature, Ts is the LST, a ¼ −67.355351,
and b ¼ 0.458606.
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3.3 Mapping UHI and Non-UHI Inside a City Area

UHI and non-UHI zones were demarcated using the following methods:18,23

EQ-TARGET;temp:intralink-;e013;116;704LST > μþ 0.5 � σ; (13)

EQ-TARGET;temp:intralink-;e014;116;6610 < LST ≤ μþ 0.5 � σ; (14)

where μ and σ are the mean and standard deviation values of LST for the whole area of the city.

4 Results and Discussion

4.1 Variation in the Distribution of NDVI, NDWI, NDBI, and NMDI

The descriptive statistics (Table 3) were presented the reliable nature of NDVI, NDWI, NDBI,
and NMDI (Fig. 2) for the whole of Raipur City. The highest mean NDVI value (0.1468) was
found in the monsoon season. Premonsoon season reflected the minimum value (−0.1466) of
mean NDWI. The lowest mean value (−0.0569) of NDBI was observed in the postmonsoon
season. The highest (−0.2743) mean NMDI was found in premonsoon season and the lowest
(−0.2866) mean NMDI value was found in winter. In the winter season, all the four indices had
the least value of standard deviation.

Table 3 Descriptive statistics of NDVI, NDWI, NDBI, and NMDI for the whole of Raipur City in four
seasons.

Season Min Max Mean Standard deviation

NDVI values

Premonsoon (mean) −0.1082 0.4702 0.1428 0.0645

Monsoon (mean) −0.1089 0.4664 0.1468 0.0635

Postmonsoon (mean) −0.1025 0.4183 0.1392 0.0659

Winter (mean) −0.1265 0.4284 0.0954 0.0561

NDWI values

Premonsoon (mean) −0.4112 0.1514 −0.1426 0.0576

Monsoon (mean) −0.4102 0.1434 −0.1466 0.0564

Postmonsoon (mean) −0.3596 0.1371 −0.1192 0.0602

Winter (mean) −0.4006 0.1582 −0.0877 0.0398

NDBI values

Premonsoon (mean) −0.3195 0.1668 −0.0198 0.0474

Monsoon (mean) −0.3219 0.2373 −0.0158 0.0477

Postmonsoon (mean) −0.3153 0.1754 −0.0569 0.0426

Winter (mean) −0.3508 0.1857 −0.0199 0.0374

NMDI values

Premonsoon (mean) −0.4635 0.0773 −0.2743 0.0518

Monsoon (mean) −0.5483 0.0714 −0.2761 0.0511

Postmonsoon (mean) −0.5361 0.0602 −0.2385 0.0499

Winter (mean) −0.5946 0.0958 −0.2866 0.0398
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4.2 Variation of LST Distribution

The LST maps retrieved from satellite image were shown in Fig. 3. Seasonal variation in the LST
distribution showed a specific thermal pattern. The mean LST values in the premonsoon, mon-
soon, postmonsoon, and winter seasons were 34.40°C, 31.70°C, 25.22°C, and 24.71°C, respec-
tively. The ranges of temperature (maximum temperature–minimum temperature) were found as
12.71°C in premonsoon image, 10.20°C in monsoon image, 8.81°C in the postmonsoon image,
and 10.03°C in the winter image, respectively. For UHI zones of the study area, the highest
threshold LST (35.23°C) was observed in the premonsoon season. Postmonsoon season reflected
the least standard deviation value (1.06°C) of LST (Table 4). Basically, this type of LST variation
was noticed due to the change in vegetation abundance and soil moisture content. Monsoon and
postmonsoon seasons were characterized by healthy vegetation and wet soil.

4.3 LST Validation with Respect to MODIS Satellite Sensor

A validation of retrieved LST using Landsat 8 data with in situ measurement or with any other
satellite data is mandatory to conduct any kind of further analysis. Due to the unavailability of
in situ measurement, Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data
were applied as a reference image for the validation of LST retrieved from Landsat 8 data. The
MODIS LST daily product is derived from bands 31 and 32 by the emissivity of land cover
types, atmospheric column water vapor, and lower boundary air surface temperature.63,64

Landsat and MODIS sensors could not provide images of the same study area for any par-
ticular date. Thus the acquisition dates of MODIS data were either one day before or one day
after the acquisition dates of Landsat 8 data. A total of eleven (three from the premonsoon sea-
son, two from the monsoon season, three from the postmonsoon season, and three from winter
season) MOD11A1 data were taken for the validation of estimated LST using Landsat 8 data.

Fig. 2 Seasonal variations of NDVI, NDWI, NDBI, and NMDI values in the whole of Raipur City:
(a) premonsoon, (b) monsoon, (c) postmonsoon, and (d) winter.
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No such atmospheric disturbances were noticed in the acquisition dates of the selected satellite
images for both the sensors. For MOD11A1 and Landsat 8 data, the spatial resolution of
retrieved LST was 1000 and 100 m, respectively. Therefore, before integrating the data,
1000-m pixel size was resampled into 100-m pixel size (Fig. 4). There was found a small differ-
ence between Landsat derived mean LST and the corresponding MODIS derived mean LST
values due to (a) 30 min intervals between the Landsat 8 and MODIS sensors (b) water
vapor content, and (c) scale effect in resampling method.63 Figure 4 compared four Landsat
8 data derived LST images with the four corresponding MODIS LST images for four different
seasons.

For the validation of the results, the pixel-wise regression analysis method was applied
between Landsat 8 retrieved LST values and the corresponding MODIS retrieved LST values.
Significant positive correlation coefficients (0.70 for the premonsoon, 0.75 for the monsoon,
0.69 for the postmonsoon, and 0.59 for winter) were found between Landsat 8 data derived
LST and MODIS data derived LST (Table 5). Hence, it can be said that the results were reliable
and consistent in spite of lacking some LST retrieval parameters.

Fig. 3 Seasonal variations in LST maps of Raipur City: (a) premonsoon, (b) monsoon, (c) post-
monsoon, and (d) winter.

Table 4 Seasonal variations in spatial distribution of LST (°C) for the whole of Raipur City.

Season
LST

(minimum)
LST

(maximum)
LST

(mean)
LST (standard

deviation)
Threshold LST

for UHI

Premonsoon (mean) 26.97 39.68 34.40 1.65 35.23

Monsoon (mean) 26.43 36.63 31.70 1.16 32.28

Postmonsoon (mean) 21.53 30.34 25.22 1.06 25.75

Winter (mean) 20.12 30.15 24.71 1.15 25.29
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Fig. 4 Retrieved LST from Landsat 8 data and MODIS data: (a) 02-Apr-2014 (Landsat 8), (b) 03-
Apr-2014 (MODIS), (c) 25-Sep-2014 (Landsat 8), (d) 24-Sep-2014 (MODIS), (e) 09-Nov-2013
(Landsat 8), (f) 08-Nov-2013 (MODIS), (g) 27-Dec-2013 (Landsat 8), and (h) 28-Dec-2013
(MODIS).

Table 5 Validation of LST retrieved from Landsat 8 data with MODIS data in different dates of
acquisition.

Landsat 8 data MODIS data Correlation coefficient

09-Nov-2013 08-Nov-2013 0.69

25-Nov-2013 26-Nov-2013 0.66

11-Dec-2013 12-Dec-2013 0.61

27-Dec-2013 28-Dec-2013 0.68

28-Jan-2014 27-Jan-2014 0.45

17-Mar-2014 18-Mar-2014 0.74

02-Apr-2014 03-Apr-2014 0.68

20-May-2014 21-May-2014 0.68

05-Jun-2014 04-Jun-2014 0.73

25-Sep-2014 24-Sep-2014 0.77

12-Nov-2014 13-Nov-2014 0.71

Premonsoon (mean) 0.70

Monsoon (mean) 0.75

Postmonsoon (mean) 0.69

Winter (mean) 0.59
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4.4 UHI, Non-UHI, and Common UHI of the Study Area

The UHI intensity (difference between the mean LST of UHI and the mean LST of non-UHI) of
the study area was determined in Table 6. In premonsoon and winter seasons, the UHI zones
were mainly generated in the north, west, and south-east periphery (Fig. 5). But in monsoon and
postmonsoon seasons, the northern and central parts (the main built-up areas and bare lands of
the city) were considered as the UHI zones. The UHI intensity for the whole of Raipur City was
2.54°C, 1.87°C, 1.76°C, and 1.96°C in the premonsoon, monsoon, postmonsoon, and winter
seasons, respectively. The mean LST values of the common UHI of the city in all four seasons

Table 6 Seasonal variations in LST (°C) of UHI, non-UHI, and common UHI in Raipur City.

Season

LST (minimum) LST (maximum) LST (mean)
LST (standard

deviation)

UHI
Non-
UHI

Common
UHI UHI

Non-
UHI

Common
UHI UHI

Non-
UHI

Common
UHI UHI

Non-
UHI

Common
UHI

Premonsoon
(mean)

35.23 26.97 35.23 39.68 35.23 39.68 36.23 33.69 36.51 0.78 1.32 0.78

Monsoon
(mean)

32.28 26.43 32.28 36.63 32.28 36.63 33.07 31.20 33.57 0.76 0.83 0.81

Postmonsoon
(mean)

25.75 21.53 25.75 30.34 25.75 30.34 26.49 24.73 26.99 0.71 0.70 0.79

Winter
(mean)

25.29 20.12 25.29 30.15 25.29 30.15 26.17 24.21 26.45 0.76 0.78 0.78

Fig. 5 Seasonal variations in UHI and non-UHI of Raipur City: (a) premonsoon, (b) monsoon,
(c) postmonsoon, and (d) winter.
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were ranged between 26.45°C (winter image) and 36.51°C (premonsoon or summer image).
Regardless of any particular season, the common UHI zones were developed mainly in the
northwest portion (bare lands and built-up areas) of the city (Fig. 6).

4.5 Relationship of LST with NDVI, NDWI, NDBI, and NMDI for the Whole
Area, UHI, non-UHI, and Common UHI of Raipur City

Generally, LST built negative relationships with NDVI and NMDI, whereas it built positive
relationships with NDWI and NDBI. This particular pattern was seen in the whole of
Raipur City, irrespective of dates (Table 7). NDBI and NMDI equally built strong regression
with LST for four seasons. Their relationships became stronger in the premonsoon, monsoon,
and postmonsoon seasons compared to winter. NDVI and NDWI showed weak relationships
with LST compared to NDBI and NMDI. NDVI presented a slightly better relationship than
NDWI. Winter season was the least reliable season for the relationships between LST and
the four LULC indices. LST-NDWI relationship remained almost neutral in winter. This is
partially due to the presence of high amount of dust particles in the air in winter.

But these relationships tend to be changed within the UHI of the city where NDVI and NDWI
reflected a stronger regression with LST for all the four seasons (Table 7). Again, the scenario
became different within the non-UHI portions of the city where NDBI and NMDI presented
a stronger regression with LST compare to the other two spectral indices. In the common
UHI region, NDVI and NDWI had a much better regression with LST, but these relationships
became gradually weak with the increase of the heterogeneous surface features. Monsoon and
postmonsoon images revealed a better regression of LST with NDVI and NDWI due to the
higher percentage of water and vegetation.

In the UHI and common UHI, high LST values were found in such areas where NDVI values
were low but NDWI values were high. NDWI showed the strongest positive regression with
LST, whereas NDVI showed the strongest negative regression. The monsoon and postmonsoon
season revealed the most consistent relationship. In the non-UHI, the high LST values were

Fig. 6 Seasonal variations in common UHI of Raipur City: (a) premonsoon, (b) monsoon, (c) post-
monsoon, and (d) winter.
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corresponding to high NDBI and low NMDI values. Due to the presence of more moisture con-
tent in soil and air, the relationships between LST and these spectral indices became more con-
sistent in the monsoon and postmonsoon images. NDBI showed the strongest positive regression
with LST, whereas NMDI showed the strongest negative regression. The premonsoon season
reflected the most significant relationship.

The best regression between LST and the four spectral indices was found for the whole
of Raipur City, irrespective of any date. This relationship became weaker with the increase
in heterogeneity in an urban landscape. Common UHI of all seasons simply indicated the
built-up area and semibare lands, which were more heterogeneous. Thus the least regression
was found in the common UHI of the city area. UHI and non-UHI of the city reflected the
moderate range of the correlation coefficient values.

5 Conclusion

In this paper, eleven Landsat 8 data of four different seasons in a single-year span were selected
for analyzing the effect of UHI intensity in Raipur City of India and to interpret the seasonal
variations for the relationships of NDVI, NDWI, NDBI, and NMDI with LST. The above rela-
tionships were examined for the whole area, UHI, non-UHI, and common UHI of the Raipur
City. UHIs were identified through the spatial distribution of LST, which mainly existed in the
northern and southern parts of the city. Generally, high LST values were generated in the bare

Table 7 Correlation coefficients for LST-NDVI, LST-NDWI, LST-NDBI, and LST-NMDI
relationships.

Season LST-NDVI LST-NDWI LST-NDBI LST-NMDI

(Whole of Raipur City)

Premonsoon (mean) −0.4235 0.2937 0.6984 −0.6988

Monsoon (mean) −0.4978 0.4123 0.4528 −0.5291

Postmonsoon (mean) −0.5124 0.4272 0.6239 −0.6647

Winter (mean) −0.1748 0.0414 0.5676 −0.5509

(UHI of Raipur City)

Premonsoon (mean) −0.3298 0.2609 0.2883 −0.1622

Monsoon (mean) −0.4998 0.5755 −0.0850 −0.0876

Postmonsoon (mean) −0.4866 0.5144 0.0905 −0.2367

Winter (mean) −0.3104 0.2572 0.2213 −0.3657

(Non-UHI of Raipur City)

Premonsoon (mean) −0.2834 0.1234 0.6877 −0.6553

Monsoon (mean) −0.2608 0.0859 0.5437 −0.5509

Postmonsoon (mean) −0.2032 0.0822 0.5827 −0.5637

Winter (mean) 0.0141 −0.1633 0.5497 −0.4782

(Common UHI of Raipur City)

Premonsoon (mean) −0.3591 0.3267 0.1759 −0.2477

Monsoon (mean) −0.5170 0.5908 −0.1992 0.0183

Postmonsoon (mean) −0.5607 0.5452 0.1579 −0.3367

Winter (mean) −0.3314 0.2726 0.0696 −0.1892
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land and built-up area. LST level was reduced significantly in the vegetal covered areas and
water bodies.

Moreover, the relationships of LST to NDVI, NDWI, NDBI, and NMDI were analyzed using
linear regression per-pixel level. In whole Raipur City, LST showed a strong positive regression
with NDBI and a moderate to strong negative regression with NMDI, irrespective of any season.
Inside the UHI, NDVI and NDWI showed a stronger regression (NDVI-negative and NDWI-
positive) with LST in comparison with the other indices. Conversely, inside the non-UHI zone,
NDBI and NMDI presented a stronger regression (NDBI-positive and NMDI-negative). Again,
NDVI-LST and NDWI-LST regression became stronger within the common UHI in all seasons.

Another objective of the research was to estimate the variations in the regression analysis for
the satellite images of four different seasons. Monsoon and postmonsoon seasons were more
prominent in showing the regression between LST and spectral indices due to the higher per-
centage of healthy green vegetation and soil moisture. The premonsoon season was less dom-
inant compared to the monsoon and postmonsoon seasons while this regression became weakest
in the winter image.
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