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Abstract. The present state of the art technologies for flood mapping are typically tested on
small geographical regions due to limitation of resources, which hinders the implementation of
real-time flood management activities. We proposed a unified framework (GEE4FLOOD) for
rapid flood mapping in Google Earth Engine (GEE) cloud platform. With the unexpected spells
of extreme rainfall in August 2018, many parts of Kerala state in India experienced a major
disastrous flood. Therefore, we tested the GEE4FLOOD processing chain on August 2018
Kerala flood event. GEE4FLOOD utilizes multitemporal Sentinel-1 synthetic aperture radar
images available in GEE catalog and an automatic Otsu’s thresholding algorithm for flood map-
ping. It also utilizes other remote sensing datasets available in GEE catalog for permanent water
body mask creation and result validation. The ground truth data collected during the Kerala flood
indicates promising accuracy with 82% overall accuracy and 78.5% accuracy for flood class
alone. In addition, the entire process from data fetching to flood map generation at a varying
geographical extent (district to state level) took ∼2 to 4 min. © 2020 Society of Photo-Optical
Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.14.034505]
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1 Introduction

Floods are one of the major costliest disasters1–3 in the world. Flood information, such as the
spatio-temporal location of flooded areas, flood depth, vulnerability, risk localities, and safe
zones, are crucial in disaster management response activities.4,5 Timely dissemination of flood
information to the disaster personnel and civilians can minimize the losses. For the last two
decades, the scientific community has advocated the potential of the remotely sensed Earth
observation (EO) datasets to provide flood maps in real-time flood monitoring applications.6,7

With the availability of new generation EO satellites having improved spatial and temporal
coverage, the flood mapping and monitoring capabilities are qualitatively enhanced.8 However,
with the high data rate of these satellites, the requirements of high-performance computing
facilities, such as storage capacity, system software and hardware, internet connectivity, and
robust flood mapping algorithms, are necessary.9–11

Among different EO datasets, synthetic aperture radar (SAR) is useful for flood mapping due
to its all-weather sensing ability. It is preferred over optical remote sensing data because the SAR
signals can penetrate through the clouds to sense the Earth objects, which is essential for flood
mapping during heavy rainfall and cloud cover. Any disaster events (floods, earthquakes, and
cyclones) trigger some changes either in geometric or dielectric or both properties of the sensing
objects, which can be efficiently monitored by SAR backscatter. The SAR backscatter from areas
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submerged under flood water is distinct from nonflooded areas that allow accurate flood map-
ping possible.12 Several studies investigate the efficient use of SAR data in flood mapping.13–16

The advantage of multitemporal SAR images over a single SAR image is a reduction in
overestimation of the flooded area.17,18 In terms of polarization, co-pol data like horizontal trans-
mission and horizontal receive (HH) or vertical transmission and vertical receive (VV) channels
are preferred over cross-pol data like horizontal transmission and vertical receive (HV) or ver-
tical transmission and horizontal receive (VH) channels.19 Also, the combined use of co-pol and
cross-pol images enhance the flood mapping accuracy, especially in urban areas.20 Quad-pol data
detected 90% of flood area when compared against optical derived flood maps.21

In several studies, with the availability of preflood and flood images, different change
detection approaches, such as ratio index,22 log ratio,23 difference index,15,24,25 normalized
change index,26,27 and polarimetric difference image,22,28 combined with different thresholding
algorithms are used to generate the flood maps. In addition to this, machine learning
algorithms, such as support vector machine,29 artificial neural networks,30 fuzzy logic,31–33 and
object-oriented,34 texture-based classification algorithms, are explored in flood mapping.35

Probabilistic and deterministic approaches were also investigated and resulted in enhanced
accuracy and reliability of flood mapping.36

SAR image acquisition at the time of flood peak helps in better understanding the event.
Fortunately, many datasets are available in case of the 2007 flood event that occurred
in Tewkesbury, United Kingdom, which became a standard experiment site for researchers.
The changes due to this flood event at varying spatial scales were analyzed rigorously with simple
local threshold and segmentation,37 split-window-based automatic thresholding combined with
hybrid Markov model,38 region growing algorithm along with change detection technique,39 and
supervised classification approach.40 Mason et al.41 utilized object-based segmentation and clas-
sification algorithms to estimate the flood extent and floodwater levels. Among several techniques,
the specular reflective properties of water surface have driven many efforts to determine threshold-
based approaches to identify as a flooded resolution cell in a radar image.6,35,39

The thresholding approaches are principally divided into three groups based on manual
intervention: automatic, semiautomatic, and manual,42 which can be applied at either global
or local level. Various thresholding algorithms, such as Otsu’s,43 Kittler and Illingworth’s,44

Kapur et al.’s,45 Tsai’s,46 and active contour thresholding,47,48 are explored in several flood
mapping studies.49,50 An unsupervised fuzzy-based flood area classification uses amplitude and
image texture information.33,51

However, in most of the above-mentioned research, the implementation of the algorithms
was performed on a smaller subset (5 to 50 km2 test sites) of the flood-affected region on
a local personal computer (PC). In case, if the flood event occurs in a larger spatial extent
(approximately thousands of square kilometers), it would be challenging to analyze the images
in local PC. The data preprocessing and algorithm implementation in a local PC take a long
time due to resources limitations such as storage capacity and processing speed. Also, when
the Sentinel-1 SAR datasets are considered, it cannot handle multitemporal images as each single
look complex (SLC) image is ∼4 GB of volume. So, dissemination of flood information for the
entire flood region is quite challenging with a local PC. Indeed, the use of such high volume
datasets for operational flood mapping is far away from being consolidated. Therefore, there is a
need to see the applicability of these approaches on large-scale flood events in cloud platform,
which enable towards operational flood management. However, the flood area mapping algo-
rithm using SAR data for a large scale is more challenging to design; absolutely automated
algorithms that require zero human interference are limited.

German Aerospace Center has developed the Water Suite, which contains four operational
approaches for water area extraction from SAR data. Martinis et al.52 compared the application
of the Water Suite on different test sites using commercial TanDEM-X SAR data. This study
suggested that integration of multitemporal SAR images can reduce the misclassification in
water surface mapping. Furthermore, the HASARD tool provided research community to detect
and monitor near real-time (NRT) flood using SAR images.53 It is implemented on the European
Space Agency’s (ESA) Grid Processing on Demand cloud platform. HASARD tool uses multi-
temporal Sentinel-1 SAR images, and the background algorithm is developed from a progres-
sively optimized data processing chain for several techniques.54–56 However, HASARD does not
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allow the user to modify or fine-tune their algorithm. In summary, the existing cloud processing
platforms and operational approaches use limited EO datasets and are not easily accessible to
everyone. Therefore, there is a need for cloud processing platform that uses a multitude of
EO datasets and also easily accessible to the end users.

In a cloud-based system such as Google Earth Engine (GEE), users can fetch and process
high volumes of Sentinel-1 data directly in the cloud, instead of downloading and processing in a
local system.57 Data processing is performed in parallel on Google’s computational infrastruc-
ture, which dramatically improves the processing efficiency and open significant opportunities
for end users. In recent years, the GEE cloud platform is widely used in numerous remote
sensing applications.58,59 Several studies use time-series EO data available in GEE catalog for
many operational applications, such as urban growth mapping,60–62 global forest change,63 global
forest watch,63,64 and global surface water explorer.65 In a very recent study, Uddin et al.66

utilized the GEE and Sentinel datasets to analyze the 2017 flood event in Bangladesh by
generating the land use land cover map required for flood area validation. Other studies show
the efficient way of handling a large volume of multitemporal EO data available in GEE cloud
platform.62,67,68 From these studies, it is inferred that GEE platform has many advantages, such as
availability of multitemporal EO datasets, parallel processing architecture, and is efficient in
handling big datasets. All the above-mentioned facts suggest that the cloud-based rapid flood
mapping system needs to be freely available, efficient, accurate, and user-friendly to stakehold-
ers and decision-makers.

In this study, we propose a unified framework (named as GEE4FLOOD) for rapid flood
mapping using Sentinel-1 SAR images through a processing chain in GEE cloud platform.
The GEE4FLOOD is efficient in handling big data, easy to implement with minimal user inputs,
effective processing time and scalable to larger spatial extent flood mapping, and universally
applicable. In this paper, GEE4FLOOD is tested on August 2018 major flood event of
Kerala state, India. For thresholding SAR images in GEE, an automatic Otsu’s thresholding
algorithm is used. Finally, we exploit Sentinel-1 SAR images to produce operational high-
resolution flood maps over a larger spatial extent. The rest of this paper is organized as follows.
Section 2 describes the study area and details of Kerala flood event and its impact. The research
methodology adopted for the study is explained in Sec. 3. In Sec. 4, results and discussions are
presented. The conclusions of the study are summarized in Sec. 5.

2 Study Area and Datasets

2.1 Study Area

This study focuses on the significant flood event that occurred in Kerala, a southern state of
India, during August 2018, as shown in Fig. 1. Kerala is situated between 8.291°N to
12.795°N latitudes and 74.863°E to 77.412°E longitudes. The spatial extent of the Kerala state
is about 38;863 km2. The state is majorly categorized into three geographical regions, i.e., low
lands, mid lands, and high lands. Low lands are mainly characterized by backwaters, river deltas,
and Arabian Sea shore.69 Unlike other metropolitan cities, the urban areas in Kerala state are
covered with a large amount of tree cover.

Kerala state received two abnormal rainfall spells during August 7 to 9, 2018, and August 14
to 19, 2018. A total of 857.4 mm of rainfall, which is 18% above normal, occurred in July 2018.
It is the first onset of flooding in Kerala state. With this heavy rainfall in July 2018, the rainwater
started flowing into the dams. Later, the state received a total rainfall of 758.6 mm between
August 1, 2018, and the end of second rainfall spell, which is 164% more than normal
rainfall.70 By the end of the first rainfall spell, the water level in several dams was up to full
reservoir level. The water from the dams was released due to heavy rainfall at the time of second
rainfall spell. Also, there were numerous landslides throughout the Kerala state. This unprec-
edented massive rainfall combined with dam water release,71 landslides, and improper urban
planning contributed to severe flooding in 13 out of 14 districts in Kerala state. According to
the National Disaster Management Authority, Kerala State Disaster Management Authority
(KSDMA), and other secondary sources, a large part of Kerala’s population is affected by
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floods and its related vector-borne diseases. According to KSDMA, 504 people died, and
3.4 million people were accommodated in 12,300 relief camps. The other socio-economic losses
include damage to houses (10,319 complete damaged and 100,000 partially damaged), damage
to 10,000 km of transport network, and 600 km2 of agriculture crops.72 All these facts about
Kerala flood prove that there is an immense requirement of flood maps, which can help in post-
disaster management activities and resilient disaster planning.

2.2 Datasets

For mapping the spatial extent of 2018 Kerala flood event, both SAR and optical images are
used. The Sentinel-1 SAR images that are available before, during, and after the flood are used.
The Sentinel-1 Ground Range Detected (GRD) images obtained from GEE platform are already
preprocessed73 to terrain-corrected σ0 images with a pixel size of 10 × 10 m. As the Sentinel-1
orbital information is accurate, the terrain-corrected SAR images also have subpixel geolocation
accuracy. The specification of the SAR images used in the research is given in Table 1. To val-
idate the results, WorldView-3 optical images that are freely available from DigitalGlobe under
open data program,74 Sentinel-2, and Landsat-8 optical images are used. The WorldView-3
image acquired before the flood, i.e., on March 9, 2018, was only used to understand the land
use pattern of the study area. Also, the field data collected during and after the flood are used for
validation. The spatial resolution of WorldView-3, Sentinel-2, and Landsat-8 optical images is
0.5 m, 10 m, and 30 m, respectively.

Apart from these imaging satellite datasets, the Global Precipitation Measurement (GPM)
precipitation data, i.e., Integrated Multisatellite Retrievals for GPM (IMERG), and World
Wildlife Fund (WWF) HydroSHEDS flow accumulation data are fetched into the GEE platform

Fig. 1 Study area showing the Kerala state of India. Sentinel-1 swath coverage over the test area
is shown in green rectangles. PWB is derived from GEE and the details are explained in Sec. 3.3.
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for further understanding of flooding pattern in the state. The spatial resolutions of IMERG
precipitation and flow accumulation layers are 0.1 deg and 15 arc sec, respectively, and the
detailed description of these datasets are given in Earth Engine Data Catalog.75

3 Methodology

GEE cloud platform can execute multiple tasks impeccably from data fetching to flood mapping
in a holistic approach as it works on a parallel processing architecture. Several steps in the flood
mapping processing chain are divided into four modules, i.e., (1) Sentinel-1 data fetching,
(2) metadata filtering in GEE cloud platform, (3) creation of permanent water body (PWB) mask,
and (4) rapid flood mapping through an automated systematic procedure. The conceptual
framework of the proposed processing chain for rapid flood mapping using Sentinel-1 with
GEE is shown in Fig. 2.

3.1 Sentinel-1 Data Fetching

GEE data catalog provides a wide range of remote sensing datasets, such as optical, thermal,
infrared, and microwave images. In this work, the readily available level-2 processed
high-resolution GRD Sentinel-1 images are utilized. A massive volume of 264 time-series

Fig. 2 Schematic workflow for rapid flood mapping in GEE cloud platform.

Table 1 Sentinel-1 images fetched fromGEE for 2018 Kerala flood mapping.

Date of acquisition Polarization Pass Flood condition

January 05, 2018 VV Des Preflood

July 16, 2018 VV Des Flood

July 28, 2018 VV Des Flood

August 9, 2018 VV Des Flood

August 21, 2018 VV Des Flood

August 27, 2018 VV Des Flood

September 2, 2018 VV Des Postflood
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Sentinel-1 images, which are available between January 1, 2015, to December 31, 2017, with a
revisit time of 12 days interval are used for PWB mask creation. A total of seven Sentinel-1
images (Table 1) that are available at preflood, flood, and postflood time duration are used for
Kerala flood mapping. All these images are directly fetched from GEE data catalog to GEE
processing platform using Earth Engine operator (ee.ImageCollection) as an image collection.
As the Sentinel-1 images available on GEE are already preprocessed to terrain-corrected radar
backscatter σ0, the time required in data downloading, SLC to GRD conversion, and data
preprocessing time is saved in GEE cloud platform.

3.2 Metadata Filtering

The Sentinel-1 image collection fetched from the previous step posses enormous information
about each image. The metadata information, such as data acquisition mode, acquisition time,
satellite pass, polarization, incident angle, and orbit number, is stored with image collection.
Thus, the user can create a filter to restrict the data volume according to the objective of the
work. In this work, all the Sentinel-1 images are filtered with descending pass, Interferometric
Wide swath mode, and VV polarization parameters using .filterMetadata operator. Also,
the .filterDate operator is used to fetch the images according to the image acquisition date.
Subsequently, a spatial filter is also created using .filterBounds operator to limit the processing
extent within the minimum bounding box of the study area. Thus metadata and spatial filtering
play a crucial role in restricting the data volume and processing time.

3.3 Permanent Water Body Mask Creation

The PWBmask used in the study was created using two datasets namely, (1) global surface water
mapping (GSWM) layer with a spatial resolution of 30 m and (2) temporal mean SAR image
with a pixel size of 10 m. The water occurrence band available with GSWM layer was prepared
by Joint Research Centre using time-series Landsat optical images from 1984 to 2015. A thresh-
old of >80 on water occurrence band was considered to obtained optical-based PWB. This indi-
cates where surface water was present at 80% occurrence over 32 years65 capturing interannual
and intra-annual changes and variability. However, optical-based PWB has few limitations such
as cloud cover and spatial resolution (30 m). Also, the water bodies may be expanded during
monsoon season due to high inflow of rainwater and even change their course in due time after
2015. Therefore, the optical-based PWB mask needs to be updated for accounting seasonality
change of water bodies after 2015, with the images acquired after 2015.

To update the optical-based PWBmask, all the 264 Sentinel-1 images are reduced to generate
a single mean SAR image using .reduce operator. Several region of interests (ROIs) over water
bodies are created in GEE platform that is spatially covering throughout the study area. An
automatic Otsu’s thresholding algorithm is implemented on the mean SAR image in which water
ROIs are used to find an optimum threshold. The SAR-based PWB mask is created in GEE
platform by classifying the mean SAR image with all the pixels less than the optimum threshold.

Some water bodies that are not detected by optical remote sensing images are identified by
SAR images due to its high sensitivity to dielectric constant.76,77 Finally, the optical PWB mask
is updated with SAR-based PWB mask to obtain the final PWB mask in GEE platform using
.updateMask operator. The GEE .updateMask operator resamples the optical-based PWB to
10 m and merges with SAR-based PWB mask.

3.4 Rapid Flood Mapping

The constellation of Sentinel 1A and 1B satellites can cover the globe with a revisit time of 3 to
12 days depending on the location and ESA program. For the southern part of India, the Sentinel-1
SAR images are acquired for every 12 days in most cases. During the disasters, the images may
be acquired with even low revisit time (6 days) from both ascending and descending pass direc-
tions. There is a time difference between the SAR image acquisition time and ingestion time into
GEE catalog. At present, this latency time varies from 30 to 70 h. The GEE developers have
plans to reduce this latency time in coming future.78 The SAR image ingestion latency time is
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not considered into GEE4FLOOD processing chain time. Therefore, the processing chain is
named as rapid flood mapping rather than real-time or NRT flood mapping because of following
points.

• Image processing is quite faster in GEE as it runs on parallel processing architecture.
• GEE is efficient in handling massive volume of images.
• GEE is capable of rapid sharing and dissemination (excluding image ingestion latency

time) of information at the time of disasters.

The workflow of rapid flood mapping is divided into four submodules, i.e., coregistration,
speckle filtering, optimum threshold identification, and flood mapping. Based on the flood
duration, the images are grouped as preflood, flood, and postflood images. Among the seven
Sentinel-1 images used to understand the flood increasing and decreasing pattern, the images
acquired on January 5, 2018, and September 2, 2018, are referred to as preflood and postflood
images, respectively. The images acquired between July 15, 2018, and August 28, 2018, are
designated as flood images.

For any change detection study, coregistration of master and slave images must be imple-
mented to ensure proper spatial alignment of images. The master image has to be carefully
chosen from archived images based on the parameters that influence the radar backscatter (σ0),
such as the same satellite track, and atmospheric conditions. Here, the preflood image is
treated as the master image since it is acquired on the clear sky, which is free from clouds and
with the same satellite track of slave images. The other six sentinel-1 SAR images are treated as
slave images.

As the first step of rapid flood mapping procedure, the slave images are precisely coregistered
to a preflood image by local rubber sheet deformations in GEE platform using .register operator.
Then, the coregistered flood and postflood σ0 images are converted to natural scale from decibel
(dB) scale. A user-defined function is created for refined Lee speckle filter with a 3 × 3 window
size. Subsequently, to reduce the inherent speckle noise in the SAR data, a refined Lee speckle
filter is applied on coregistered flood and postflood images in GEE platform. After speckle filter-
ing, the σ0 images are converted back to dB scale. An Otsu’s automatic thresholding algorithm is
implemented on the speckle filtered images. The detailed explanation is given in Sec. 4.1.
The criterion function required for optimal threshold identification is the minimization of
within-class variance of the nonflood and flood class pixels in the SAR image. It is the same
as maximizing the between-class variance as given in Eq. (1):

EQ-TARGET;temp:intralink-;e001;116;333σ2B ¼ ωfωnfðμf − μnfÞ; (1)

where σ2B is the between-class variance, ωf and ωnf are fraction of flood and nonflood pixels,
respectively, and μf and μnf are mean values of flood and nonflood pixel classes, respectively.
An optimum threshold is identified for each image, and all the pixel values that are less than
the threshold are classified as flooded areas. The computational time and memory usage taken
for each GEE operator in generating the flood maps along with the description are given in
the Appendix in Sec. 6.

3.5 Validation Approach

The Kerala flood event happened at a regional level, which covers a larger spatial area. Thus,
it is extremely challenging to collect the validation data throughout the entire state as it requires
enormous resources. Therefore, the validation is conducted by both direct (field data) and
indirect (secondary data) methods.

Secondary data include optical remote sensing images (Landsat-8 and Sentinel-2), 3-h
GPM v5 IMERG rainfall data, WWF HydroSHEDs flow accumulation, and hydrologically
conditioned digital elevation model (DEM) that are available in GEE catalog have been
used in the study. A function is created in GEE platform to generate the daily rainfall by
summation of hourly data. All these secondary data are clipped to the required geographical
extent in GEE.
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The field data were collected at various locations that are highly affected by flood on different
time scales. A narrative survey was conducted during and immediately after the Kerala flood that
recorded information such as location, flood depth, and photographs. Also, some photographs
were obtained through online sources.79 Thus, with the limited field data, validation of the results
is confined to region C of Fig. 3. With the help of photographs and survey data, a ground truth
flood area polygon vector file was digitized in GEE platform to compare against the results.
Various performance indices were defined as follows to find the overall accuracy. The detailed
validation approach is given in Sec. 4.3.

• True positive (TP): Number of flood pixels in the ground truth data detected as flood by
the algorithm.

• True negative (TN): Number of nonflood pixels in the ground truth data detected as non-
flood by the algorithm.

• False positive (FP): Number of nonflood pixels in the ground truth data detected as flood
by the algorithm.

• False negative (FN): Number of flood pixels in the ground truth data detected as nonflood
by the algorithm.

• True positive rate (TPR): It signifies the proportion of actual flood pixels on the land
surface that is correctly detected as such. TPR is computed as TP/(TP + FN), and a high
TPR value indicates a better accuracy.

• True negative rate (TNR): It signifies the proportion of actual nonflood pixels on the land
surface that is correctly detected as such, and it is computed as TN/(FP + TN).

• Positive predictive value (PPV): It signifies the proportion of flood pixels detected by
the algorithm that is actually flooded, which is computed as TP/(TP + FP).

• Negative predictive value (NPV): It signifies the proportion of nonflood pixels detected by
the algorithm that is actually nonflooded, and it is computed as TN/(FN + TN).

• Accuracy: It is a measure of how the algorithm correctly identifies either flood or nonflood
pixels. It is the proportion of both TP and TN to total number of cases and computed as
(TP + TN)/(TP + FP + TN + FN).

• F-score: A single measure for algorithm performance for flood class pixels alone. It is the
harmonic mean of TPR and PPV and computed as per Eq. (2).

EQ-TARGET;temp:intralink-;e002;116;367F ¼ 2 ×
TPR × PPV

TPRþ PPV
: (2)

Fig. 3 Spatio-temporal flood maps derived from GEE on July 16, 28, August 9, 21, and 27, 2018,
for three regions A, B, and C as highlighted on the Kerala state.
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4 Results and Discussions

4.1 Threshold Identification

A function is developed in GEE platform for Otsu’s thresholding algorithm as described in
Ref. 43. From the water ROIs, the histograms are obtained as shown in Fig. 4 for all the
SAR images that were given as the inputs to the Otsu’s function. In each plot of Fig. 4, the
speckle filtered backscattered values (orange color histogram) are plotted against the nonfiltered
values (blue color histogram). From Fig. 4(a), it is inferred that a bimodal histogram with
the values ranging from −4 to −26 dB is seen for the preflood image. The lower values
(−18 to −26 dB) and higher values (−14 to −4 dB) of the histogram correspond to backscatter-
ing from the stable/calm water bodies and dry riverbed/dry sand, respectively. Subsequently,
after the first heavy rainfall occurred in July 2018, the backscatter values started shifting toward
the lower values of the histogram, as shown in Fig. 4(b). Here, the histogram is a left-skewed
histogram rather than bimodal. This is due to the change of land surface condition from dry to
wet and the movement of floodwater to the low elevated areas. From the visual interpretation of
three optical images in the first row of Fig. 5, it is evident that the land surface condition is dry at
the time of preflood image acquisition and persisted as wet surface even after the July 16, 2018,
SAR image acquisition.

In Figs. 4(c) and 4(d), the histograms are shifted toward left with the majority of the values in
the range of −24 to −18 dB. At this phase, the land surface condition is saturated, and the
floodwater receded through the drainage channels. Even though the Sentinel-2 optical images
acquired on July 28, 2018, and August 7, 2018, as shown in Fig. 5 are partially cloudy,

Fig. 4 Temporal histograms of σ0vv before and after speckle filtering of the images acquired on
(a) January 5, (b) July 16, (c) July 28, (d) August 9, (e) August 21, and (f) August 27, 2018.
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Fig. 5 Optical images acquired within the time duration (before/after) for every corresponding
SAR image acquisition. B and C are the same regions given in Fig. 3.
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it is understood that agriculture fields in the low lying areas are affected by floodwater.
In Fig. 4(e), all the values in the histogram are concentrated around −22 dB. This is due to
a major rainfall spell that occurred during the August 14, 2018, to August 17, 2018, where the
land surface got flooded and yielded low backscattering values. This is evident from the visual
interpretation of optical images acquired on August 22, 2018, which is a day after the SAR image
acquisition on August 21, 2018. In Fig. 4(f), the histogram is right skewed due to high back-
scattering values as the land surface is started to regain its original condition.

After generating the histograms of all the SAR images, optimum threshold values are
obtained by implementing the Otsu’s function. The thresholds values obtained for temporal
SAR images as shown in Table 1 are −16.99, −14.94, −19.25, −19.11, −19.27, −21.12, and
−21.12 dB. However, there are some limitations with Otsu’s algorithm.43,80 Those limitations
include (1) the histogram needs to be bimodal; (2) size of flood and nonflood classes should be
comparable; and (3) if the variances of flood and nonflood classes are larger than mean values of
flood and nonflood classes, there is possibility of identifying an incorrect threshold. Therefore,
due to these limitations, the threshold identified for the temporal images might yield underes-
timation of flood area. The overestimation of flood area is an extreme low possibility due to
masking of water-like reflecting surfaces, such as layover, shadows, fore-shorting regions, and
wet lands using preflood image.

4.2 Spatio-Temporal Flood Mapping

The initial flood extent is obtained by considering the pixels whose values are lower than the
optimum thresholds. The initial flood extent obtained from flood images and postflood images
includes flood area along with water bodies and radar-like reflecting surfaces, such as highways
and airport runways. The inclusion of water bodies in the flood area identification contributes to
overestimation. Therefore, the PWB are masked out using PWBmask in GEE platform to reduce
the overestimation. Apart from this, the radar-like reflecting surfaces and wetlands that are
detected as flood area in the preflood image are masked out to obtain final flood extent. For
a detailed understanding, three regions were selected based on the flood severity, location acces-
sibility, and land use. The spatio-temporal flood extent of these regions A, B, and C are shown in
Fig. 3, where red and blue color represent the flood area and PWB, respectively. The processed
GPM daily rainfall data obtained in GEE cloud are clipped to the three regions A, B, and C in
Fig. 3 separately and spatially averaged to get a single value. The quantitative estimation of flood
area for the respective regions, as shown in Fig. 3, is plotted against the GPM daily rainfall
obtained from GEE, as shown in Fig. 6.

From Fig. 6, it is inferred that the flood area obtained from temporal SAR images follows the
rainfall pattern obtained from GPM IMERG data. For example, after the major rainfall spell from
August 14 to 19, 2018, the massive runoff generated from rainfall started receding. The same
decreasing pattern is also observed in the flood area obtained from temporal SAR images
acquired after the major rainfall spell. For the small geographical extent, as shown in Fig. 3,
the total time consumed for spatio-temporal flood maps generation is ∼1 min. The geographical
area of region A in Fig. 3 is 33.62 km2, which is characterized by water bodies, semiurban areas
mixed up with tree cover, and agricultural land uses. The geographical area of region B in Fig. 3
is 33.63 km2, which is mainly characterized by agricultural land use and a small portion of
semiurban land use. The geographical area of region C in Fig. 3 is 11.78 km2, which is char-
acterized by water bodies, urban areas, open spaces, and agricultural land uses, as shown in
Fig. 7. These land features provide unique scattering phenomena when radar electromagnetic
wave interactions with the targets are considered. Water has a high dielectric constant and acts as
a specular reflector, which yield very low backscatter power return to the sensor. It makes the
water bodies to appear as a dark feature in a SAR image (irrespective of polarization channel).
For majority of other natural land features, particularly over agricultural areas, the radar wave
produces diffused scattering. However, the dominant scattering of radar wave changes with
respect to different crop growth stages. In the case of semiurban areas, double-bounce scattering
becomes dominant, which is likely due to corner reflection from buildings and the structure of
surrounding coconut trees in the study area.
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Fig. 6 Flood area obtained from three regions A, B, and C, as shown in Fig. 3, is plotted against
GPM IMERG daily rainfall from July 1, 2018, to September 5, 2018.

Fig. 7 Optical remote sensing images acquired before the flood event for the regions, as shown in
Fig. 3.
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In the study area, SAR images acquired in July and August are used, where the crops are in
a growing stage, which led to a high amount of volume scattering. From region A of Fig. 3,
it is observed that the flood is predominantly detected among all the land uses except for
urban areas. Many studies50,55,81 stated that the major challenges for flood mapping in urban
areas are layover, shadows, and the presence of radar-like reflecting surfaces. In this study,
the test site is characterized by presence of radar-like reflecting surfaces and heterogeneous
built forms, which results in layover and shadows. Therefore, the automatic thresholding
algorithm is applied on preflood images to extract these land surfaces that lead overestimation
of flood area. After identifying the flooded areas from flood images and post-flood images,
the land surfaces obtained from preflood image are masked out to avoid overestimation. Also,
the increased backscatter from flooded urban streets or high-density built-up areas results in
underdetection, which needs to be tackled by high-resolution SAR imagery and interferomet-
ric SAR coherence.

After the first rainfall spell occurred in the second and third weeks of July 2018 as shown in
Fig. 6, the land surface got flooded in all the regions of Fig. 3, which is evident from Fig. 5. Even
though the geographical area and land use of region A and B of Fig. 3 are the same, the flood area
obtained from region B is higher than region A. This is due to the low elevation of region B, high
rainfall, and flow of drainage water to Vembanadu Lake. As the floodwater receded, there is
a decrease in flood area until the major rainfall spell occurred during the third week of
August 2018. After the major rainfall spell, there is a steep increase in the flood area and a
decreasing trend afterward. Among all the selected locations, the region B is profoundly affected
by the flood. For the better insight of water flow dynamics at a larger spatial area, the regional
level flood mapping is carried out and described in Sec. 4.2.1.

4.2.1 District-level flood mapping

To carry out district-level postdisaster strategic planning activities, a district-level flood damage
assessment is required. Therefore, both quantitative and qualitative flood assessment are carried
out in the GEE cloud platform at the district level. The reducer and quantification functions
are developed in GEE to generate the spatio-temporal flood maps at the district level and to
quantify the flood area, respectively. The district-wise temporal flood area obtained from
GEE is shown in Fig. 8, and it is observed that Alappuzha is the worst affected, followed
by Kottayam and Thrissur districts. Therefore, the flooding pattern (increasing and receding)
in these three districts is studied in detail. The spatio-temporal distribution and quantitative
estimation of flood area with the rainfall for these three districts are shown in Figs. 9 and 10,
respectively. From Fig. 10, it is inferred that the rainfall pattern for all three districts is almost
similar with an offset. The flood area derived from SAR images also follows the district-level
rainfall pattern.

Fig. 8 District wise temporal flood area obtained from GEE for Kerala state.
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During the first spell of rainfall in July 2018, the land surface got flooded among these three
districts, and the floodwater started receding. An increase in the flood area is observed for
Alappuzha and Kottayam districts, whereas decreasing trend for Thrissur district is obtained
for the images acquired on July 28, 2018. Subsequently, a decreasing trend of flood area is
observed in all three districts for images acquired on August 9, 2018. By the time of image
acquisition on August 21, 2018, the land surface got saturated. After the heavy rainfall occurred
during the third week of August 2018, there is a steep increase in the flood area among these
three districts and subsequently decreasing trend. Even though the rainfall received by Thrissur
during the third week of August 2018 is higher than the other two districts, the flood area
obtained is lesser than the other two districts. This is due to the location of Thrissur in higher
elevation region as shown in Appendix 2 (Sec. 6.2), and receding of the floodwater through
the drainage channels is shown in Fig. 11.

Apparently, Alappuzha has most flood-affected area due to its low elevation, backwater flow,
dam water release, and the majority of the west-flowing rivers draining into Vembanadu Lake.
Similarly, the state-level flood maps are generated and given in Appendix 1 (Sec. 6.1). At a
district and a state level, the total time consumed for spatio-temporal flood maps generation
is ∼2.5 and 4 min, respectively.

Fig. 9 Spatio-temporal distribution of flood area for Thrissur, Alappuzha, and Kottayam districts.
Red and blue color represent flood and perennial water bodies, respectively. Preflood σ0 image
derived from Sentinel-1 is used as a background.

Fig. 10 Flood area obtained from three districts as shown in Fig. 9 is plotted against their respec-
tive district wise GPM IMERG daily rainfall from July 1, 2018, to September 5, 2018.
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4.3 Validation

The results obtained from GEE for all image acquisition dates cannot be validated due to lack of
ground truth data at that particular time. Most of the ground truth data are collected after the
major rainfall spell in the third week of August 2018. So, validation is carried out on the flooded
area obtained from the SAR image acquired at high flood stage on August 21, 2018. The ground
truth data are generated from Sentinel-2 optical images acquired on August 22, 2018, along with
field survey data. The ground truth vector file generated in GEE is rasterized with the same pixel
size as Sentinel-1 σ0 images and the same spatial extent as region C of Fig. 3. The PWB pixels
are excluded from the performance metrics calculation. As mentioned in Sec. 3.5, various
performance metrics are generated, as shown in Table 2.

The TPR and TNR values are 66% and 98%, respectively, which indicate that for nonflood
class, the ground truth is almost matching with algorithm output, whereas some discrepancies are
seen for flood class. A 100% F-score value represents the perfect match between predicted flood
area and ground truth flood area, i.e., perfect recall and precision for flood class, and a 0%
represents a perfect mismatch. The accuracy and F-score values for the region C are 82.04%
and 78.55%, respectively, which show the close match with the reference data for both classes
and flood class, respectively. The value of F-score is promising considering the usage of Otsu’s
automatic thresholding algorithm without any manual tuning or modification of algorithm.

Fig. 11 Flow accumulation maps generated from GEE cloud platform for Kerala state, Thrissur,
Alappuzha, and Kottayam districts, respectively.

Table 2 Flood mapping performance metrics for region C.

Ground truth

Flood Nonflood

Algorithm output Flood TP ¼ 39204 FP ¼ 1214 PPV ¼ 0.97

Nonflood FN ¼ 20119 TN ¼ 58231 NPV ¼ 0.74

TPR ¼ 0.66 TNR ¼ 0.98
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The difference in the amount of algorithm performance for both classes (flood and nonflood) and
flood class alone is quite low. Further, high-resolution SAR images and timely acquisition of
validation data may boost accuracy.

5 Conclusions

A unified framework for flood mapping in GEE cloud platform is proposed, which utilizes multi-
temporal EO data. The GEE4FLOOD processing chain uses Otsu’s thresholding algorithm for
finding the optimum threshold for each SAR image. GEE4FLOOD is user-friendly, efficient in
data processing, less time-consuming, and scalable to varying geographical extents. The main
advantage is that it requires minimal user inputs such as defining the area of interest and selection
of preflood and flood images. The area of interest can be either manually drawn in the GEE
platform or a shapefile has to be imported. Therefore, GEE4FLOOD can be utilized by policy-
makers, disaster management personnel, urban planners, and civilians irrespective of their
knowledge about EO data. GEE4FLOOD is implemented on 2018 flood event of Kerala state
to understand the flood progression and receding pattern. The flood maps generated from
GEE4FLOOD show an acceptable agreement with IMERG rainfall data and other secondary
reports. An overall accuracy of 82% for both (flood and nonflood) classes and 78.5% accuracy
for flood class alone is achieved. It is interesting to look into the processing time of the proposed
framework. The time taken for generating the spatio-temporal flood maps is ∼2 to 4 min for
varying geographical extent (district to state level).

Apart from the Kerala flood event, the processing chain can be equally addressed for any
other flood event. It is advisable to consider a couple of points while implementing the
GEE4FLOOD. (1) A cloud-free preflood image needs to be selected as it contributes to the
reduction of flood area overestimation. (2) In case of unavailability of SAR images during heavy
rainfall, users need to wisely choose the nearest available SAR images in the span of flood dura-
tion. (3) It is suggested to collect the ground truth data at the time of SAR image acquisition if
possible or immediately after the rainfall. (4) In high-density urban areas, flood mapping with
GRD products available with GEE catalog may not yield desirable accuracy. With the additional
use of input parameters like VH pol image data, coherence information obtained by SLC data
processing may enhance the flood area estimation, which can be studied in the future. In addi-
tion, validation dataset derived from crowd sourcing might also be explored. Nonetheless,
GEE4FLOOD has shown promising results in case the of 2018 flood event of Kerala state,
India. As GEE4FLOOD is universally applicable, it can be used for effective decision-making
process in a comprehensive disaster management cycle.

6 Appendix: GEE Performance

Table 3 shows the computational time and memory usage for generating the flood maps in GEE
high-performance computing cloud platform.

6.1 State-Level Flood Mapping

The spatio-temporal flood maps generated in GEE cloud platform are shown in Fig. 12. From the
figure it is observed that on September 2, 2018, the flood is receded and the land surface regained
its original state.

6.2 Elevation

The HydroSHEDS hydrologically conditioned DEM available in GEE cloud platform with 3 arc
sec spatial resolution is fetched and clipped to three districts as shown in Fig. 2. The elevation
values for Thrissur, Alappuzha, and Kottayam are ranging from −18 to 1361, −27 to 107, and
−29 to 1155 m, respectively (Fig. 13). While generating the flood maps at a regional scale, i.e.,
district or a state level, it is imperative that masking out higher elevation regions may optimize
the computational time. Here, in this study, the higher slopes were masked out in GEE while
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Table 3 Algorithm performance and computational time for flood mapping in GEE.

Viewing 121 profiles, 40 from application programming interface (API) calls, and 81 from map tiles.

Compute Peak mem Count Description

20379.613 162M 7344 Algorithm Image.reduceNeighborhood computing pixels

3438.917 101M 9,899,720 (plumbing)

1939.475 927M 49,342 Algorithm Image.log10 computing pixels

1936.756 27M 1632 Algorithm Image.reduce computing pixels

1669.345 1.2M 120 Algorithm ImageCollection.reduce with reducer Reducer.median

1422.789 741M 408 Algorithm Image.arrayReduce computing pixels

1086.665 25M 48,934 Algorithm Image.load computing pixels

483.94 92M 728,281 No description available

475.196 5.7M 167,710 Loading assets: COPERNICUS/S1_GRD_FLOAT/(. . . )

467.518 7.6M 15,993 Algorithm (user-defined function)

456.028 8.0M 57,502 Algorithm Image.multiply computing pixels

240.907 36M 1632 Algorithm Image.abs computing pixels

163.687 10M 763,464 Algorithm ImageCollection.mosaic

106.021 9.1M 408 Algorithm Image.pow computing pixels

100.481 16M 6648 Reprojection precalculation between EPSG:32643 and EPSG:4326

47.3 27 k 729,090 Algorithm Image.clip

44.791 3.8M 661,717 Algorithm Image.select

41.187 1.0M 950,070 Algorithm Image.resample

26.887 21M 549,298 Loading assets: COPERNICUS/S1_GRD_FLOAT

25.956 414 k 604,800 Algorithm PointMatcher.PointMatcherContainer

14.611 1.4M 223,485 Algorithm Image.log10

14.134 19 k 393,600 Algorithm Image.constant

12.596 5.3M 1012 Algorithm Image.reduceRegion

11.751 4.0M 516,091 Loading assets: COPERNICUS/S1_GRD

7.195 584 48,934 Reprojecting pixels from EPSG:32643 to EPSG:4326

6.585 1.0M 27,936 Algorithm Image.clip computing pixels

4.75 1.9M 241,914 Algorithm Image.addBands

3.536 100 k 11,316 Reprojecting geometry to EPSG:4326

3.531 983 k 81 Encoding pixels to image

2.812 1.3M 232,305 Algorithm Image.multiply

1.708 35 k 1130 Algorithm Image.displacement

1.019 537 k 196 Table query

0.988 2.8 k 248,640 Algorithm Image.resample computing pixels

0.988 800 17,484 Algorithm Image.constant computing pixels

0.775 337k 162 Reprojecting geometry to SR-ORG:6627

0.686 418k 216 Algorithm Image.paint computing pixels

0.408 39k 13,230 Algorithm Image.reduceNeighborhood

0.299 162 k 196 Table decode

0.293 648 9792 Algorithm Image.updateMask computing pixels

0.281 7.2 k 196 Table metadata

0.273 760 7344 Algorithm Image.neighborhoodToBands computing pixels
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Table 3 (Continued).

Viewing 121 profiles, 40 from application programming interface (API) calls, and 81 from map tiles.

Compute Peak mem Count Description

0.272 60 k 125,22 Algorithm Image.updateMask

0.218 50 k 1470 Algorithm Image.neighborhoodToBands

0.209 1.6 k 4896 Algorithm Image.eq computing pixels

0.198 26M 3528 Algorithm Image.displacement computing pixels

0.194 1.6 k 5712 Algorithm Image.subtract computing pixels

0.183 23 k 10,290 Algorithm Image.subtract

0.172 1.8 k 4896 Algorithm Image.divide computing pixels

0.138 7.5 k 1172 Algorithm Image.displace

0.113 12 k 141 Listing collection

Fig. 12 State-level spatio-temporal flood maps for 2018 flood event of Kerala state, India.
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computing the flood area at state and district level. This is achieved by fetching the HydroDEM
into GEE from terrain information obtained using .Terrain() operator. The slope image was
fetched from terrain dataset using .select() operator.
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