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Abstract. The process of geometric correction of a satellite image requires a network of ground
control points (GCPs), the density of which depends on the accuracy required. In this study, an
approach to determine the distribution of the GCPs was developed based on dividing the surface
terrain into zones of low- and high-height variances. Comparative statistics were investigated to
summarize the optimum number and distribution of the GCPs. For a uniform arrangement of 10
GCPs, the accuracy using root mean square error was 7.19 m. This accuracy was improved to
6.13 m following the inclusion of just two additional GCPs in the zone of high-surface height
variance. Thus, the transformation using the polynomial model and a set of GCPs, for which the
surface variance in height was considered, resulted in greater accuracy than using the conven-
tional uniformly distributed method. In addition, the time required for the trial-and-error selec-
tion of the locations of the GCPs was reduced. Our results suggest that a method that considers
the variance in height of the surface terrain could be applied to various types of images such as
satellite or aerial photography. © The Authors. Published by SPIE under a Creative Commons
Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires
full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.8.083684]
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1 Introduction

Aerial photographs and satellite images are fundamental sources of data used for the analysis in
geographic information systems, remote sensing, and mapping. The image acquisition process
depends on the type of sensor used. Geometric distortion of the images from current pushbroom
satellites, such as SPOT, ASTER, and Quickbird, is derived from two principal sources: inac-
curate modeling of the charge-coupled device sensor geometry and small movements of the
instrument platform during image acquisition.1 High-resolution satellite images are prone to geo-
metric distortion and thus, geometric correction is desirable.2 The primary distortions have both
internal and external sources. The former are the distortions inherent within a system that can be
adjusted based on the characteristics of the sensor, e.g., lens distortion, which can be compen-
sated for using the colinearity equation. The latter are the errors introduced from sources such as
the Earth’s curvature and changes in atmospheric conditions, the reflective properties of light,
and surface topography. These external sources distort the image directly, causing positions
within the image to be inconsistent with those on the ground. Variations in elevation and surface
roughness cause a particular type of distortion known as perspective distortion, which normally
happens when using a short focal length.

In some cases, images used in satellite data analysis have no accompanying information
regarding the sensor model of the satellite and thus, they may require adjustment using
other appropriate models. Different methods for the transformation of one coordinate system
to another have been proposed,3 e.g., the Helmert transformation, affine transformation,
pseudo-affine transformation, projective transformation, second-order conformal transforma-
tion, and polynomial transformation. Of these, the polynomial model is simple and easy to
use. Historically, polynomial models are among those empirical models used most frequently
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for fitting functions.4 The distortion is predominantly low frequency and therefore, it can be
modeled using a low-order polynomial. Polynomials offer many advantages such as simple
form, moderate flexibility of shapes, well-known and understood properties, and ease of use
computationally. This model transforms three-dimensional (3-D) object coordinates to image
coordinates and converts the data from 3D to two-dimensional (2-D). This transformation
requires the use of ground control points (GCPs), which may be obtained using integrated infor-
mation from ground surveys, photogrammetry, or GPS data comprising x, y, and z coordinates.
Rizos and Satirapod5 stated that the differential GPS technique generally provides an accuracy of
better than 3 m in the horizontal component at twice the distance root mean square error (RMSE)
(at approximately 95% confidence level). The results of the transformation are the coefficients of
the polynomial equation.

Generally, GCPs for geometric correction are distributed uniformly throughout the entire
image using a square grid.6 This approach is suitable for the calculation and determination
of the GCP positions, but it does not account for onsite topography. The number of GCPs should
be higher in mountainous areas or in areas with high variance of surface height. However,
obtaining GCPs by field survey or other methods can be costly and time consuming; therefore,
the optimization of the GCP network is desirable. The GCP locations should have high-spatial
frequency and well-defined positions such as at river crossings and road junctions.7 Elevation is
one of the three important variables needed to determine the coefficients of the 3-D polynomial
equation and the positions of the GCPs. The GCPs should be located to sample the 3-D content
of the data, i.e., a greater number of samples in regions of high height variation. Wang et al.
stated that the spatial distribution of GCPs may affect the accuracy and quality of image cor-
rection.8 This study aims to determine the optimum number of GCPs required for each type of
surface by classifying the level of height variance based on the standard deviation (SD) of the
elevation distribution.

2 Study Area and GCP Availability

The study area is located in Chiang Mai and Lampoon, which are northern provinces of
Thailand, approximately 600 km from Bangkok. This area has a variety of topographic char-
acteristics including both flat areas and highly complex surfaces. The coordinates of the upper
left and lower right corners of the target area are 98.83040° E, 18.7702° N and 99.02550° E,
18.5918° N, respectively, encompassing an area of approximately 406 km2. The observed sur-
face variance in height, based on a digital elevation model (DEM), is highly diverse, causing high
values of SD and difference in elevation (the highest – the lowest), which are 69 and 643 m,
respectively. Areas with high variance in height (mountainous terrain) accounted for ∼35% of
the area, mainly to the northwest; and the remaining 65% in eastern and southern parts of the
image was areas with low variance in height (urban). Figure 1 shows an image of the landscape
of this area acquired from Worldview-1 (Level 1B) on February 23, 2008. Level 1B data are

Fig. 1 Study area in Chiang Mai and Lampoon, Thailand.
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radiometric-corrected, sensor-corrected, and band-aligned, providing imagery as seen from
the spacecraft without any further correction of terrain distortion. Worldview-1 operates at
an altitude of 496 km with a resolution of 50 cm in the panchromatic band at nadir. The specified
geolocation accuracy of the instrument is less than 4.0 m CE90 (Circular Error of 90%) without
GCPs in a 2-D image.9

There are 78 GCP points with 3-D coordinates and accuracy of 0.2 m available for the image,
which are provided by the Land Development Department of Thailand; however, only 68 GCP
points were used in this study as independent check points (ICPs). The ICPs are those points that
have been used in the RMSE process for checking the transformed image. A static and kinematic
GPS survey was used to acquire the positions of the GCPs. All GCPs including the ICPs are
shown in Fig. 2.

3 Three-Dimensional Polynomial Model

Using GCPs to determine the coefficients, polynomial modeling is applied to generate a new
surface model with enhanced accuracy, both in terms of shape and position of the image.
Stability analysis of the polynomial differential equations is a central topic in nonlinear dynamics
and control, which in recent years has undergone major algorithmic developments following
advances in optimization theory.10 The transformation model creates a new geocoded image
space, in which interpolated pixel values will be placed later during resampling. The procedure
requires that the polynomial equations to be fitted to the GCPs using least squares criteria to
model the geometrical distortion in the image domain independently of its source. The degree of
the polynomial may be chosen based on the desired accuracy and the number of GCPs available.
In general, polynomial equations used for modifying images are typically second or third order.
The independent variables in the equation are Xn, Yn, and Zn. The dependent variables are
the row and column positions of the pixel (rp and cp).

For matching the point of the GCP chip on the ground and the associated point on the dis-
torted image, the surrounding observation has been used. The coordinate functions are as shown
below:

rp ¼ pvðXn; Yn; ZnÞ (1)

cp ¼ phðXn; Yn; ZnÞ; (2)

where rp is the position of the pixel in the row that corresponds to the column of the pixel in
the distorted satellite image, cp is the position of the pixel in the column that corresponds
to the row of the pixel in the distorted satellite image, and X, Y, Z, and n are the ground

Fig. 2 All GCPs and ICPs across the digital elevation model (DEM).
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coordinates that correspond to the east and north positions, elevation, and local position number,
respectively.

Function pvðXn; Yn; ZnÞ and phðXn; Yn; ZnÞ, as a second-order polynomial, can be generated
from Eqs. (1) and (2) as follows:

rp ¼ a0 þ a1Xn þ a2Yn þ a3Zn þ a4XnYn þ a5XnZn þ a6YnZn þ a7X2
n þ a8Y2

n þ a9Z2
n: (3)

cp ¼ b0 þ b1Xn þ b2Yn þ b3Zn þ b4XnYn þ b5XnZn þ b6YnZn þ b7X2
n þ b8Y2

n þ b9Z2
n: (4)

Generally, polynomial transformations with terms up to the first order can model rotation,
scale, and translation and are computationally economical. As additional terms are added, more
complex warping can be achieved. aj and bj ðj ¼ 0; 1; : : : ; 9Þ are coefficients that are unknown
but can be calculated using the least squares method from the error E of all data n deviating from
the function pðXn; Yn; ZnÞ as follows:

E ¼
Xn
i¼1

½rp − ða0 þ a1Xi þ a2Yi þ : : : þ a9Z2
i Þ�2: (5)

Then, the minimum error can be found by differentiating Ewith respect to the coefficient and
setting the result to zero; thus, the following 10 subequations are produced:

∂E
∂a0

¼ 0;
∂E
∂a1

¼ 0;
∂E
∂a2

¼ 0; : : : ;
∂E
∂a9

¼ 0: (6)

The results of these equations will be in the form of a matrix with the following equation:2
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On the left side of this equation, a symmetric matrix “A” represents the known values square
matrix (10 × 10), and matrix “B” denotes the coefficients matrix (10 × 1). On the right side,
matrix “C” represents the known value matrix (10 × 1). Therefore, the multiplication of both
sides of Eq. (7) with inverse matrix A provides the coefficients a0; a1; a2; : : : ; a9.

4 Surface Variance in Height Classification Method

Bayer et al.11 stated that the synthetic aperture radar images reveal radiometric image distortions
that are caused by terrain undulations, because the 3-D nature of the surface is ignored and GCPs
are distributed uniformly here. We account for this and increase the sampling density depending
on local variations of elevation. Here, two zones were chosen for these data; however, this may
not be optimal. One method to allow for this would be to partition the image into several regions
based on height variation and to have different GCP densities in the different regions. Many
histogram-based approaches identify a threshold for the binarization of an image by approxi-
mating a histogram as two distribution functions.12–14 Wu et al. proposed procedures for change-
point detection (threshold selection) by determining the maximum distance from a line L to a
cumulative histogram, where line L connects the first and last points of the cumulative histogram
(Fig. 3).15 The main advantage of this method is being able to use the height to find a change-
point of the surface variance in height. It is also appropriate for a large number of data points.

In Fig. 3, the straight line L connecting ðx1; y1Þ and ðxN; yNÞ is a cumulative “equalized”
histogram. Histogram equalization modifies the pixel values in such a way that the intensity
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histogram of the resulting height becomes uniform.16 The maximum distance to L provides
a baseline for dividing the cumulative histogram into two parts. The point ðxT; yTÞ, representing
the maximum distance to L, is the change-point to be used as the threshold. Line L can be
obtained from the following equation:

ðy − y1Þ
ðx − x1Þ

¼ ðy − yNÞ
ðx − xNÞ

: (8)

Assume that the obtained line equation is as shown below:

axþ byþ c ¼ 0: (9)

The distance from ðxi; yiÞ to L is expressed as follows:

jaxi þ byi þ cjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p : (10)

Compare the distances of all ðXi; YiÞ points, where 2 ≤ i ≤ N − 1, to L and set T ¼
arg maxN−1

i¼2 D½ðXi; YiÞ;L�. Thus, the selected threshold is XT .
15

4.1 Change-Point Determination Using the Elevation Distribution

The classification of surface height variance, based on elevation data, was conducted using
grid-based DEM data. The DEM data with resolution of 30 m were downloaded from the
Global DEM and operated jointly by NASA and the Japan Ministry of the Economy. These
data were then used to create a graph of the frequency distribution. The change-point was deter-
mined using the cumulative distribution curve.

Figure 4 shows the elevation on the x-axis, the number of pixels in each elevation interval on
the left side y-axis, and the cumulative percentage at each elevation interval on the right side
y-axis. Based on this graph, the change-point for elevation was determined to be 308 m.

4.2 Change-Point Determination Using the SD Distribution

The SDs represent the variance in height. Each SD is calculated using the eight pixels that sur-
round a pixel of interested from a 3 × 3 elevation matrix. Therefore, the same calculation can be
used to determine all the SDs for the entire image. The method proposed by Wu et al.15 was also
used to determine the change-point based on the SD histogram.

Figure 5 shows a SD histogram with the SDs plotted on the x-axis, the number of pixels in
each SD interval shown on the left side y-axis, and the cumulative percentage of the SDs pre-
sented on the right side y-axis. Based on this graph, the SD change-point was determined to be 3.

Fig. 3 Change-point detection and selection of a threshold using a cumulative histogram.
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4.3 Classification and Zoning

After the change-points were determined, both the elevation frequency distribution and the SD
frequency distribution were used to classify the surface into zones. The classification was con-
ducted by designating those areas with elevation >308 m or SD > 3 as zones with high variance
of height and necessarily, those areas with elevation <308 m or SD < 3 were classified as zones
with low variance of height.

The final zoning of the area using Global Mapper software is shown in Fig. 6. It can be
seen clearly that the area is divided into two zones following the change-point detection process.
The white part represents the zone of high variance in height, and the black part represents
the zone of low variance in height.

Fig. 4 Elevation histogram and cumulative distribution.

Fig. 5 Standard deviation (SD) histogram and cumulative distribution.
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5 Number of GCPs and GCP Allocation

5.1 Number of GCPs for Each Zone

The model used for geometric correction and for identifying the numbers and positions of the
GCPs in this study was a second-order 3-D polynomial. As shown above, there are 10 variables
in the form of coefficients in the polynomial: a0 to a9. The number of GCPs required for this
model is 10 per image. The image was classified into two zones using the zoning method
described above, and the 10 points were distributed between these two zones. The number
of GCPs assigned to each zone was determined after consideration of the zones size and degree
of height variance.

The percentages of the total area (measured from the image) assigned to the two zones
without consideration of the degree of variance in height were 35% (0.35) and 65% (0.65),
respectively. The trial weights for the degree of variance in height ranged from 40% to 70%
for four cases.

Table 1 shows five scenarios for the case being studied. In the first scenario, the 10 GCPs
were distributed uniformly throughout the entire area. The proportional areas of the two zones
were the same for all cases. For example, the calculation for Case II was conducted with the area
of high variance in height assigned an influence of 40% and a proportional area of 35% (fixed).
Accordingly, the area of low variance in height had an influence of 60% and a proportional area
of 65% (also fixed). Based on this information, the number of GCPs to be distributed into each
zone was determined to be 4 and 6 for the low and high variances in height zones, respectively.
The results for all scenarios are shown in Table 1.

Fig. 6 Two zones divided through variance in height classification.

Table 1 Trial percentages of influence of the variance in height and number of GCPs for each
zone.

Cases

High-variance in height Low-variance in height

% Influence GCPs - N % Influence GCPs - N

I 35 3.5 65 6.5

II 40 4 60 6

III 50 5 50 5

IV 60 6 40 4

V 69 7 30 3
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5.2 GCP Allocation

In general, GCPs are used in uniform distribution patterns. Points should first be placed on
the four corners of the image to control the accuracy of regional mapping.17 Then, the other
GCPs should be distributed uniformly within each zone. In this study, the selection of the loca-
tions of the GCPs was conducted manually. The locations of the GCPs for the five trial cases,
based on the numbers of GCPs presented in Table 1, are shown in Fig. 7.

Figure 7(a) shows Case I, in which the GCPs were allocated using the uniform distribution
method. Four GCPs were placed at the corners to control the boundaries of the study area.
The fifth GCP was placed at the center of the area, and the remaining five GCPs were spaced
equally around the fifth point, resulting in a pentagon shape. The variance in height was not
considered in this case.

For Cases II to V presented in Figs. 7(b) to 7(e), the GCP allocation based on a uniform
distribution was conducted as follows:

1. Ten assumed points were defined within the study area, corresponding to the coefficients
in the polynomial (a0 to a9), and each point is circled to show clearly the definition
applied in each trial case.

2. First, four GCPs were allocated near the four corners of the image.
3. The other priority GCPs should be allocated to the corners of each zone.
4. Then, an available GCP is selected as close as possible to the center of each

assumed point.
5. The remaining GCPs should be allocated in other areas within the same zone for

an equidistant coverage.

6 Results and Evaluation of Accuracy

The evaluation of accuracy was conducted by cross-checking the GCP positions on the trans-
formed image in 2-D ðXest; YestÞ against the actual locations at the same positions on the ground
in 2-D ðXact; YactÞ. The ground coordinates for the transformed image can be expressed by
reversing Eqs. (3) and (4), because the polynomial transformation can be reversed from object
coordinates to image coordinates, or vice versa. The accuracy of the transformation was
determined using the RMSE with all the remaining 68 ICPs scattered throughout the image.
The equation used in this calculation was as follows:18

Fig. 7 GCP allocation for each trial case: (a) I—uniformly distributed, (b) II, (c) III, (d) IV, and (e) V.
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RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��P

n
i¼1 ðXact − XestÞ2

�þ �P
n
i¼1 ðYact − YestÞ2

��
n

s
; (11)

where n is the number of all remaining ICPs, Xact and Yact are the actual control points’ X and Y
coordinates, and Xest and Yest are the estimated control points’ X and Y coordinates.

Table 2 shows the RMSEs results when the GCP distribution was selected by varying the
numbers and locations of the GCPs. It can be concluded that Case I is the best case because it
shows the lowest average RMSE. This is probably because Case I applied a uniform distribution,
which is a popular method for allocating GCPs. Furthermore, the variance in height of the sur-
face in this case was ignored. The other cases that resulted in an increasing RMSE after the GCP
positions were moved from the area of low variance in height to the area with high variance in
height.

To compare the 68 points in the transformed image, 68 ICPs were used and the evaluated
direction of error, both in the x- and y-axes, is presented in Fig. 8. It was necessary to enlarge
the scale by a factor of 100 to show clearly the direction of error. Furthermore, Fig. 8 shows that
there were still errors in the upper-left corner of the map of error, corresponding to the zone of
high variance in height.

To confirm that the surface variance in height influenced the accuracy of the geometric cor-
rection of the image, a number of GCPs were removed or added to the zone of high variance in

Table 2 RMSEs for the ICPs.

Case

RMSE

ICP-X (m) ICP-Y (m) Average X -Y (m)

Total High Low Total High Low Total High Low

Case I 2.33 3.74 0.97 6.80 11.31 1.85 7.19 11.91 2.09

Case II 2.64 3.56 1.71 6.92 10.44 3.40 9.69 11.03 4.45

Case III 2.85 3.38 2.57 7.33 9.44 6.11 9.80 10.03 6.62

Case IV 23.77 4.95 42.58 69.96 15.87 124.04 73.88 16.62 131.14

Case V 52.27 7.87 62.33 169.95 24.23 202.74 177.81 25.48 212.10

Fig. 8 Map of error, Case II.
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height and low variance in height; the different number of GCPs used per trial was two points.
The results from this validation are presented in Tables 3 and 4.

By increasing and decreasing the number of GCPs in the zone of high variance in height, it
was determined that the number of GCPs cannot be reduced below 10, as shown clearly in Fig. 9
by the rapid increase in RMSE when the number of GCPs was reduced from 10 to 8. The RMSE
decreased by about 12% following the increase in the number of GCPs from 10 to 12. No sig-
nificant improvement in accuracy can be observed by increasing the number of GCPs beyond 12.

Table 3 RMSEs of GCPs removed and added in high-variance zone.

Number of GCPs in
high variance zone (added) Number of all GCPs

RMSE

RemarkHigh Low All ICPs

1 (−2) 8 37.71 16.17 26.08 Uniformly distributed

3 (0) 10 11.91 2.09 7.19

5 (þ2) 12 10.39 2.88 6.31

7 (þ4) 14 11.19 2.80 6.58

9 (þ6) 16 11.13 2.72 6.21

11 (þ8) 18 12.05 2.78 6.39

Note: Remark: (−) indicates GCPs removed, and (+) represents GCPs added.

Table 4 RMSEs of GCPs removed and added in low-variance zone.

Number of GCPs in low
variance zone (added) Number of all GCPs

RMSE

RemarkHigh Low All ICPs

5 (−2) 8 24.74 17.45 20.05 Uniformly distributed

7 (0) 10 11.91 2.09 7.19

9 (þ2) 12 12.12 2.06 7.36

11 (þ4) 14 12.43 2.80 7.49

13 (þ6) 16 12.32 2.18 7.68

15 (þ8) 18 12.52 2.36 7.84

Note: Remark: (−) indicates GCPs removed, and (+) represents GCPs added.

Fig. 9 Effect of removing/adding GCPs in high-variance zone.
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Increasing or decreasing the number of GCPs in the low variance in height zone resulted in
the same trend found in the high variance in height zone; however, the results did not show any
significant improvement in accuracy following an increase in the number of GCPs beyond
10 (Fig. 10).

7 Conclusions

In this study, an image of mountainous terrain of the Chiang-Mai area acquired by Worldview I,
a global DEM, and 78 ground truth points with an accuracy of 0.2 m were used to evaluate
the accuracy of distortion correction using a polynomial model. Using the turning point
from the elevation and SD histogram, the terrain was divided into two regions: low variance
in height and high variance in height. This study determined the RMSE of the GCPs’ coordinates
and demonstrated that the distribution of the GCPs affects the accuracy. In particular, it was
shown that a uniform distribution of GCPs was the best arrangement. The effect of increasing
or decreasing the number of GCPs in the high/low variance in height zones was investigated for
the case of uniform distribution. The results conclude that a suitable minimum number of GCPs
was 10 and that the accuracy was improvable by including just two additional GCPs in the zone
of high variance in height, but that increase in the number of GCPs in the zone of low variance in
height offered no significant improvement in accuracy.

The results of this study could be applied to aerial photographs or satellite images as guidance
for identifying the optimum numbers and locations of GCPs for each zone of variance in height,
especially for study areas with a variety of surface types. Through this approach, researchers
could save time on the trial-and-error selection of locations for GCPs.
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