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ABSTRACT. Within the realm of optical neural interfaces, the exploration of plasmonic resonances
to interact with neural cells has captured increasing attention among the neurosci-
ence community. The interplay of light with conduction electrons in nanometer-sized
metallic nanostructures can induce plasmonic resonances, showcasing a versatile
capability to both sense and trigger cellular events. We describe the perspective
of generating propagating or localized surface plasmon polaritons on the tip of an
optical neural implant, widening the possibility for neuroscience labs to explore the
potential of plasmonic neural interfaces.
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Over the past years, optical neural interfaces have gained widespread adoption in neuroscience
laboratories, facilitating interdisciplinary collaborations and driving novel exploratory research.
Neuroscientists teamed with physicists and engineers to develop photonic tools to improve light
delivery and collection from scattering brain tissue, to generate microscopy and endoscopic
methods to target hundreds of neurons simultaneously,1,2 or to image deep brain regions with
high spatio-temporal resolution for monitoring neural activity3,4 or neurotransmitter release.5,6

Novel polymeric fibers,7,8 also employed for optical control of gut-brain interactions,9 have been
devised in a synergistic effort with material scientists, and the interaction with chemists has
enabled the use of colloidal up-conversion semiconductor nanoparticles to get point-like light
sources close to the cell membrane.10,11

In this framework, the application of nanotechnology to neuroscience research holds the
potential to revolutionize the way we interface with neural tissue with and without the use
of genetically encoded optical actuators or neural activity indicators.12,13 Examples are the
groundbreaking Neuropixel and SiNAPS technology,14,15 which exploit semiconductor nanofab-
rication to generate ultra-high-density neural recording implantable systems; the use of carbon
nanotubes on flexible neural implants;16 and implantable aptamer field-effect transistors17 to
perform electrochemical detection of neurotransmitters.

From a photonics perspective, integrated waveguides and phased arrays have been devised
to obtain dynamically reconfigurable illumination patterns to control neural activity with spatio-
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temporal resolution18,19 or to select the wavelength sensed by implantable photodetectors with
single-photon sensitivity.20 As an exploratory field, when scaled further down to the nanometer
level, both dielectrics and noble metals can strongly enhance light–matter interactions, and the
resulting physical phenomena can either sense or trigger cellular events21–23 (Fig. 1). In this
framework, the coherent interaction between light and conduction electrons in metallic nano-
structures is of particular interest because it can induce localized surface plasmon polariton
(LSPP) in metallic nanoparticles (NPs) or surface plasmon polaritons (SPP) in periodic nano-
structures. These plasmon resonances produce sub-wavelength localization of electromagnetic
fields that generate enhanced absorption or scattering at the structure’s resonant wavelength.

Both plasmonic-enhanced scattering and absorption have been deeply investigated for inter-
facing with neural cells in vitro. For example, surface-enhanced Raman scattering (SERS) can
potentially enable neurochemical detection at attomolar concentrations through spectral mea-
surements of photons scattered by the target molecule interacting with the plasmonic-enhanced
electromagnetic field.25 Resonant absorption is instead at the base of thermoplasmonic heating
(TPH), which exploits the enhanced light–matter interactions to provide a strong temperature
gradient highly localized in space and time.26,27 When applied to nanoparticles conjugated
with the cell membrane, TPH can modify the membrane capacitance locally and elicit action
potentials.21 Optogenetics28 has revolutionized the ability to use light for precise control of neural
activity within genetically targeted populations, and TPH has the potential to translate the com-
plexity of genetic modification to less stringent requirements. Potential applications of TPH to
control neural activity leverage nanoparticle-based light-heat mediators in proximity to cell mem-
branes, instead of light-gated ion channels across the membrane.21 Despite TPH not being cell-
type specific, NPs can be functionalized with appropriate ligands to target many different cell
phenotypes,21 potentially enabling the capability to deliver plasmonic heat mediators to specific
population of neurons. In addition, the nanoparticles’ LSPP resonances can still be excited at the
diffraction limit, preserving the spatial resolution typical of optogenetic techniques.

As the most common applications of nanoplasmonics are exploited in vitro or are based on
colloidal nanoparticle formulations injected in vivo, one of the next frontiers is represented by
the possibility of generating plasmonic resonances on implantable photonic systems. This would
allow for multiple benefits, notably (i) to facilitate applications of TPH stimulation and SERS
sensing in deep brain regions, circumventing the limitations imposed by tissue scattering by
enabling the immediate interaction of guided photons with the plasmonic structures; (ii) to avoid
the direct injection of nanoparticles into the central nervous system, the fate and toxicity of which
are still under debate;29,30 and (iii) to provide a remote and dynamic control on the excitation field
to optimize the exploitation of plasmonic sensing.

Fig. 1 Surface plasmon resonances can be employed for high-sensitivity neurotransmitter detec-
tion through surface-enhanced Raman, as well as for triggering action potentials through local heat
generation. The Raman spectrum on the top row is reproduced from Ref. 24. The panel titled
“Triggering of action potentials” is reproduced from Ref. 21.
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For this to be effective, several conditions should coexist on the same neural probe. First, the
light-guiding properties of the probe should allow for exciting the plasmonic resonances, for
example, enabling momentum-matching in periodic nanostructures supporting SPPs.31 Then,
the nanostructures should be distributed on a surface wide and thin enough to extend the plas-
monic enhancements from the nanoscale to a physiological scale (tens or hundreds of microm-
eters), matching with the size of the cellular group of interest. Finally, tight adhesion of the
nanostructures on the probe is also a key requirement to prevent nanotoxicity that, for example,
can be caused by the bioaccumulation of NPs, which can be harmful independently from the
reactivity of their material in a bulk formulation.32

Considering these requirements, multimodal optical fibers (MMFs) are a promising candi-
date for developing implantable neuro-plasmonic systems22,24,31,33 (Fig. 2). The wealth of infor-
mation that can be transferred through several hundreds of modes is accompanied by a relatively
high numerical aperture (NA) compacted in an implant cross-section that can range from a few
hundreds down to a few micrometers. The NA is directly linked to the maximum transversal
component of the wavevector (kT) of guided light, which is the main parameter affecting the
momentum-matching condition. Control over the kT (within the limit imposed by NA) can
be gained by employing phase modulation at the input of the waveguide33,34 [Fig. 2(a)], by inject-
ing light at a well-defined input angle,35 or by tapering the waveguide36 [Fig. 2(b)]. Peculiarly,
this control can be obtained over the entire fiber facet or in a reconfigurable sub-region of the
plasmonic surface.33 For fabrication, plasmonic structures can be integrated onto silica-based
MMFs with either nano-patterning a previously deposited material (the so-called top-down fab-
rication) or direct nucleation of the nanostructures directly on the implantable waveguide (usually
referred to as bottom-up or self-assembly). Top-down methods are better suited for controlled
patterning of small resonators, whereas bottom-up approaches benefit from low costs and
high throughput, making them more appropriate for wide surface structuring. Gold NPs can
be deposited on either flat-cleaved or tapered optical fibers by bottom-up methods including
electrostatic self-assembly, dip coating, laser-assisted evaporation, or solid-state dewetting, with
this latter providing for ligand-free, highly dense, and statistically uniform coverage of NPs24

[Fig. 2(c)]. Depositing nanometer-thin dielectric films on top of the nanostructures or introducing
adhesion metal layers (for instance with Ti) during the fabrication process can further engineer

Fig. 2 (a) Wavefront shaping can be employed to obtain the momentum-matching condition on the
nanostructured facet of a multimode optical fiber. Reproduced from Ref. 33. (b) Implantable
tapered optical fibers hosting plasmonic nanogratings. Reproduced from Ref. 31 (c) Plasmonic
gold nanoislands nucleated directly onto the taper of an implantable fiber. Reproduced from
Ref. 24.
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the NP adhesion properties on optical fiber, mitigating potential release in brain tissue. In addi-
tion to silica-based MMFs, counting for high transmission and minimal autofluorescence across
visible and infrared spectra, soft polymeric fibers are also emerging as promising candidates for
applications in plasmonic neural interfaces. Recent advancements have successfully induced
SPPs within both continuous and patterned gold thin films hosted on polymeric fibers, comple-
menting the distinctive mechanical attributes of these fiber optics and paving the way for inno-
vative sensing methodologies.37,38

Therefore, the combination of waveguide optics, nanofabrication, and light–matter inter-
actions has the potential to gather the neurophotonics and neuroscience community to explore
the use of in vivo neuroplasmonics. Although waveguide-based neuroplasmonics remains in its
nascent stages, its potential applications are vast, particularly in targeting deep brain regions or
structures spanning significant dorso-ventral extents. The ability to manipulate the near field
properties through either SPPs or LSPPs can indeed enable the exploration of spatially resolved
refractive index sensing to study the local optical properties of brain tissue,39,40 SERS imaging to
monitor neurochemicals dynamics at very low concentrations,24,25,33,41 and the implementation of
nonlinear optical methods such as surface-enhanced coherent anti-stoke Raman imaging.42

Moreover, prospective applications also include the realm of genetically encoded fluorescent
indicators of neural activity. For instance, leveraging the far-field response of periodic plasmonic
structures enables the generation of scattering-resilient Bessel beams,43,44 thereby potentially
enhancing functional fluorescence excitation. Furthermore, exploiting the relationship between
resonant wavelength, wavevector, and guided modes offers opportunities for novel multiplexing
methods,31 enriching the breadth of information extractable from the brain through a single neu-
ral interface.

In conclusion, we view plasmonic neural interfaces as a promising research direction to
complement the existing approaches for neural interfaces with the central nervous system.
Interestingly, functionalities such as TPH and SERS sensing might be integrated alongside the
existing approaches based on optical, photonic, and high-density opto-electrical architectures,
synergistically adding one more technique to the available tools for studying the central nervous
system.
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